考慮次序與否 1.1

這段改編自 2010 年 6 月 15 日的對話。

初學機會率的其中兩個最大難處是,要釐清「什麼時候要考慮次序」和「怎樣為之『相同情況』」,例如:

有一個袋子,內裡有十張卡紙。每張卡紙上,都寫上了一個英文字母。那十個字母分別是「AAABBBCCCC」,即是三個 A、三個 B 和 四個 C。你將要抽其中三個字母出來。被抽出來的卡紙,不會放回袋中。

假設整個過程是隨機的,即是各個可能性的機會均等。問題是,你抽中三個都是 A 的機會率是多少?

P 方法:

總共要抽三個字母:

(_)(_)(_)

抽第一個時,總共有十個字母,而你想要的 A,則有三個。所以,第一個機會率分數是十分之三(3/10)。

(3/10)(_)(_)

抽第二個時,總共餘下九個字母,而你想要的 A,則有兩個。所以,第二個機會率分數是九分之二(2/9)。

(3/10)(2/9)(_)

類似地,第三個機會率分數是八分之一(1/8)。

(3/10)(2/9)(1/8)

結論是,抽到三個 A 的機會率是 1/120。

(3/10)(2/9)(1/8)

= 1/120

在用「S 方法」驗算前,我們先考慮,我們需不需要,再額外考慮「次序問題」呢?

(HYC:你的意思是,你只考慮了,抽到「AAA」這個籠統的情況。但是「A」其實有三個,所以會形成六種可能性。

方便起見,我叫第一個 A 做「A1」、第二個 A 做「A2」和 第三個 A 做「A3」。那六種可能的結果是:

(A1)(A2)(A3)

(A1)(A3)(A2)

(A2)(A1)(A3)

(A2)(A3)(A1)

(A3)(A1)(A2)

(A3)(A2)(A1)

那樣,我們需不需要再把,以上的結果乘以 6 呢?)

不需要,因為剛才那幾個機會率分數,其實已內置了次序的考慮:

3/10)(2/9)(1/8)

正正是因為第一張被抽出來的卡紙,無論是 A1、A2 還是 A3 都可以接受,第一個機會率分數的分子才會是 3。你那種結果,正正是分子的(3 x 2 x 1)。

3/10)(2/9)(1/8)

= 6/720

— Me@2013.01.20

致讀者:如發現本文有思考漏洞,或者運算錯誤,請以電郵告知本人。謝謝!

— Me@2012.10.17

2013.01.20 Sunday (c) All rights reserved by ACHK