無限蘋果 1.5

無限年 2.5 | 微積分 4.5

這段改編自 2010 年 6 月 15 日的對話。

換句話說,這個高速心算方法,其實就是由 x 次方的大小,來比較眾多「超大」的級數。有了這個「比較次方 法」,你在作正式的運算前,就可以直接知道答案。所以,除了剛才提及,「用計數機代 x = 100,000」的方法外,你還可以用這個方法,來驗算牽涉「無限」的極限題目。

而你得到的答案,有三種可能。

第一種情況是,因為分母中 x 的最大次方,大過分子中 x 的最大次方,所以當 x 趨向「無限大」時,整個分數會趨向「無限小」,即是零。例如,

lim_{x -> infinity} x^2/(x^3 + 6)

= …

= 0

第二種情況是,由於分母中 x 的最大次方,小過分子中 x 的最大次方,導致當 x 趨向「無限大」時,整個分數都趨向「無限大」,即是「沒有極限」。例如,

lim_{x -> infinity} x^3/(x^2 + 6)

= …

-> infinity

最後一種情況是,分母中 x 的最大次方,和分子中 x 的最大次方相同。那樣,當 x 趨向「無限大」時,整個分數都趨向一個「有限數」。至於那個「有限數」是什麼,你只要看看分子和分母中, x 最大次方的係數(coefficients),就可以判斷到。例如,

lim_{x -> infinity} (2 x^3 + 3 x + 7)/(5 x^3 + 3 x^2 + 6)

= lim_{x -> infinity} (2 x^3 + …)/(5 x^3 + …)

= …

= 2/5

— Me@2013.02.24

2013.02.24 Sunday (c) All rights reserved by ACHK