微積分 6.6

無限年 3.6

這段改編自 2010 年 4 月 3 日的對話。

(安:但是, (\delta) 是什麼呢?

你還未賦予 \delta 意義。亦即是話,你對「無限小」的定義,尚未完成?)

無錯。我還需要講清楚,\delta 究竟是什麼。

不過,每一題極限(limit)題目的 \delta 都會不同。\delta 並沒有通用的定義,而是要經過一點運算才知道。例如,以這一題極限題目而言,\delta 剛好等於 (\epsilon)。

( \lim_{x \to 3} \frac{x^2-9}{x-3} ) = 6

意思是,如果你要求數式 和 6 的距離,小於 (\epsilon),無論 \epsilon 有多麼小,你都一定可以達成,只要你設定 x 和 3 的偏差,小於 (\epsilon)。例如,如果你要求數式和 6 的距離,小於 0.001(\epsilon),只要你設定 x 和 3 的偏差小於 0.001(\delta = \epsilon),就可以達成。

(安:還有,你說那些後期數學家,就是用了這一套避開了「無限小」這個詞彙的語言,來描述牛頓和萊布尼茲,在「微積分初版」中,原本想帶出的意念。

你是否暗示了,其實「微積分初版」中的結果是正確的,雖然運算步驟含糊其詞?)

可以那樣說。「微積分初版」的運算結果大致正確;對於日常用家而言,可信可用。現在中學的「微積分」課程,也是「微積分初版」。

(安:那為什麼還要嚴格定義「無限小」?那是否庸人自擾?)

因為「微積分初版」的運算結果,只是「大致正確」,並非「完全正確」。在高深一點的理論或應用中,「微積分初版」會完全瓦解。

還有,「『微積分初版』的運算結果大致正確」,是事後孔明。「微積分初版」並不知道自己,原來「大致正確」。那是「微積分再版」對它的評語。

一日「無限小」這個邏輯漏洞尚未修補,一日也不知道,「微積分初版」在什麼情況下可以用,什麼情況下不可以。

— Me@2013.03.11

2013.03.11 Monday (c) All rights reserved by ACHK