注定外傳 1.8

Can it be Otherwise? 1.8

凡是量度,都只會得到近似值,所以,只能討論「近似同一性」(量度準確度)。亦即是話,當我們說,那兩支筆的長度「相同」時,是指它們的長度,相近到以當時的肉眼和儀器,暫時感受不到分別而已。

(問:那如果是數數目(使用整體)的情況呢?

例如:你有 10 隻手指,我又有 10 隻手指。那樣,這兩個 10,不就是「絕對相同」嗎?)

應該是「確切相同」,而不是「絕對相同」。在這裡,「確切」的意思是,不再只是近似。

那兩個數字,不再只是「相似」(近似相同),而根本是同一個數字。

凡是量度,都只會得到近似值,所以,只能討論「近似同一性」(量度準確度)。凡是數數,則有可能得到確切值,所以,可以討論「確切同一性」(數數準確度)。

(問:那為什麼不可以說「絕對相同」?)

幾乎可以,但未臻完善。

如果只是討論那兩個整數,兩者的確是「絕對相同」。

但是,根據現在的上文下理,我們要考慮的,不只那兩個整數。我們還要考慮的是,「兩個物件,或者兩個物理系統,有沒有可能完全相同?」

在量子力學中,即使有兩組百分百一樣的物理系統,即使它們獲得完全相同的輸入,都可能有不同的輸出。

下次如果遇到相同的情境,可不可以有不同的結果?

換句話說,正式要比較的,不只是(例如)兩個人的手指數目,而是那兩個人。

在這個情況下,相對於手指數目而言,他們就絕對相同。但是,相對於整體而言,他們就沒有可能,在所有方面,都百分百相同。例如,他們的左手食指長度,只可能近似相同,不可能確切相同。

由於二人只可能「相對於某些方面」而言,絕對相同。這個「絕對」,並不是真的那麼「絕對」。那樣,用字就應嚴格一點。

「絕對」,應該用作「相對」的相反。而「近似」的相反,則應該用「確切」。

兩件物件,或者兩個物理系統,不可能在所有方面,都確切相同、完全一樣,因為,比較兩者時,總會有些量度(例如左手食指長度)的成份。

凡是量度,都只會得到近似值,所以,只能討論『近似同一性』(量度準確度)。

換而言之,兩樣東西,不會「絕對相同」。

(這裡的「東西」,是指宏觀的物理系統。至於兩粒微觀粒子,則有可能「全同」。但那是另一個話題,不宜在這裡詳述。)

— Me@2015-10-04 07:32:32 AM

2015.10.04 Sunday (c) All rights reserved by ACHK