注定外傳 2.1.1

Can it be Otherwise? 2.1.1 | The problem of induction 2.1

如果沒有明確指出,那個「必然」,是相對於哪個「觀測準確度」(觀察者解像度)而言的話,問一件事是不是「必然」,是沒有意思的,因為,無論那一件事,是在過去還是未來,往往既可以解釋成「必然」,又可以解釋為「非必然」。

對於過去的事,例如,在剛才甲和乙「這次數學考試我不合格,是不是必然」的討論中,當一方說那件事是「必然」時,另一方可以立刻,走深一個層次, 到達下一個「觀測解像度」,把同一件事,說成是「偶然」的;然後,原方又可以再走到,再下一個層次,把那事說成是「必然」的;如此類推。

(層次一的事件描述:)

當甲覺得「這次數學考試我不合格」,可能是「必然」時,

(層次一的反證:)

乙可以指出,其他同學中,有人於該次考試中合格,證明了「這次數學考試不合格」,並非必然。

(層次二 —— 準確一點的事件描述:)

然後,甲又可以質疑,那只是簡化了事件描述,所做成的錯誤結論;他所指的事件,是「這次數學考試我不合格」,而不是「這次數學考試不合格」。

(層次二 —— 詳細一點的反證:)

接著,乙再可以指出,甲在數學科的其他考試中,試過合格。所以,「甲數學考試不合格」,並非注定。

(層次三:)

但是,甲又可以質疑,那亦是簡化了事件描述,所做成的錯誤結論;他所指的事件,是「這次數學考試我不合格」,而不是「數學考試我不合格」。

然後,乙再可以指出,甲可以將那份試卷,再做一次;如果合格,那就可以證明,「這次數學考試甲不合格」,並非必然。

(層次四:)

接著,甲又可以質疑,那都是簡化了事件描述,所做成的錯誤結論;他所指的事件,是「這次數學考試我不合格」,而不是「這份數學考試卷我不合格」。再做一次同一份考試卷,根本不應視作為,同一次考試。

甲總可以找到,事件「這次數學考試我不合格」的獨特之處。(至起碼,另一事件和原本事件,發生的時空不同。)

而乙則指出,一方面,正正是因為「總可以找到原本事件的獨特之處」,根本沒有和原本事件,「絕對相同」的另一件事件,可以給你判別,原本事件是否注定;至多只能與,「盡量相似」的事件比較,看看有沒有可能,有不同的結果。

— Me@2015-11-17 02:02:03 PM
 

2015.11.18 Wednesday (c) All rights reserved by ACHK