宇宙大戰 1.2

PhD, 2.4 | 故事連線 1.1.6 | 碩士 3.4

.

(問:我也遇過類似的情境。

我和一位好朋友合作做小組習作時,雖然未至於反目,但總會有很多爭拗。和他合作前,明明和他感情要好。各自有什麼困難時,對方總會杖義相助。

為什麼人類會,那麼奇怪呢?)

.

簡單地說,即使是同一個人,其實也有不同方面,各樣性格。

做朋友時,你只需要接受小部分—你可以選擇,只接受他,最好的優點。但是,做工作伙伴時,你卻要接收大部分—你未必可以選擇,不接受他,最壞的缺點。

.

(問:那樣,如果要「複雜地說」呢?)

.

複雜地說,每個個體也透過自己,在這宇宙間的經歷,形成一個「主觀宇宙」,簡稱「世界觀」。

大部分人,也不自覺地,以為他的主觀宇宙,就是客觀宇宙的全部。這個不幸,源於每個人的主觀宇宙,是他唯一能夠觀察到的「客觀宇宙部分」;每個人當時的主觀宇宙,是他當時唯一能夠,觀察到的「客觀宇宙部分」。

只有一些「被選擇的心靈」,簡稱「半神人」,才會想像到,他的主觀世界,只是客觀世界的極小部分。所以,如果兩個人也不是「半神人」,而又要在工作上合作的話,其實就相當於,把兩個(主觀)宇宙的大部分,重疊在一起。

每個宇宙原本,都有各自的運行法則;貿然要求兩個宇宙,互相干涉對方內政,自然會十分危險。

六千五百萬年前,單單是一個小行星與地球相撞,就足以令大部分恐龍滅絕。試想想,兩個宇宙相撞,殺傷力會大多少倍。

— Me@2019-01-01 11:20:57 PM

.

.

2019.01.01 Tuesday (c) All rights reserved by ACHK

宇宙大戰 1.1

PhD, 2.3 | 故事連線 1.1.5 | 碩士 3.3

.

(問:你好似講到,人類那麼危險?)

.

因為事實上,人類的確是,那麼危險。

.

剛才所講,有關選擇碩士或博士論文導師,所需的技巧,背後的精神,其實是通用的—同時適用於你將來選擇公司、上司、生意合作伙伴、配偶,等等。

選擇錯誤,同樣是有改變一生的後果。

.

(問:人類真的那麼危險嗎?)

.

你一日未試過,同一個人有工作關係,或者錢銀來往,你也不會知道,他的真面目。

時常會聽到一類故事:

甲和乙是幾十年的要好朋友。他們決定合作創業。不料,一同工作不出幾個月,就反目收場。

.

(問:我也遇過類似的情境。

我和一位好朋友合作做小組習作時,雖然未至於反目,但總會有很多爭拗。和他合作前,明明和他感情要好。各自有什麼困難時,對方總會杖義相助。

為什麼人類會,那麼奇怪呢?)

.

簡單地說,即使是同一個人,其實也有不同方面,各樣性格。

做朋友時,你只需要接受小部分—你可以選擇,只接受他,最好的優點。但是,做工作伙伴時,你卻要接收大部分—你未必可以選擇,不接受他,最壞的缺點。

.

(問:那樣,如果要「複雜地說」呢?)

.

— Me@2018-12-20 11:06:49 PM

.

.

2018.12.20 Thursday (c) All rights reserved by ACHK

Relational quantum mechanics

EPR paradox, 10

.

Relational quantum mechanics (RQM) is an interpretation of quantum mechanics which treats the state of a quantum system as being observer-dependent, that is, the state is the relation between the observer and the system. This interpretation was first delineated by Carlo Rovelli in a 1994 preprint, and has since been expanded upon by a number of theorists. It is inspired by the key idea behind special relativity, that the details of an observation depend on the reference frame of the observer, and uses some ideas from Wheeler on quantum information.

,,,

Relational solution

In RQM, an interaction between a system and an observer is necessary for the system to have clearly defined properties relative to that observer. Since the two measurement events take place at spacelike separation, they do not lie in the intersection of Alice’s and Bob’s light cones. Indeed, there is no observer who can instantaneously measure both electrons’ spin.

The key to the RQM analysis is to remember that the results obtained on each “wing” of the experiment only become determinate for a given observer once that observer has interacted with the other observer involved. As far as Alice is concerned, the specific results obtained on Bob’s wing of the experiment are indeterminate for her, although she will know that Bob has a definite result. In order to find out what result Bob has, she has to interact with him at some time {\displaystyle t_{3}} in their future light cones, through ordinary classical information channels.

The question then becomes one of whether the expected correlations in results will appear: will the two particles behave in accordance with the laws of quantum mechanics? Let us denote by {\displaystyle M_{A}(\alpha )} the idea that the observer {\displaystyle A} (Alice) measures the state of the system {\displaystyle \alpha} (Alice’s particle).

So, at time {\displaystyle t_{2}}, Alice knows the value of {\displaystyle M_{A}(\alpha )}: the spin of her particle, relative to herself. But, since the particles are in a singlet state, she knows that

{\displaystyle M_{A}(\alpha )+M_{A}(\beta )=0,}

and so if she measures her particle’s spin to be {\displaystyle \sigma }, she can predict that Bob’s particle ( {\displaystyle \beta } ) will have spin {\displaystyle -\sigma }. All this follows from standard quantum mechanics, and there is no “spooky action at a distance” yet. From the “coherence-operator” discussed above, Alice also knows that if at {\displaystyle t_{3}} she measures Bob’s particle and then measures Bob (that is asks him what result he got) — or vice versa — the results will be consistent:

{\displaystyle M_{A}(B)=M_{A}(\beta )}

Finally, if a third observer (Charles, say) comes along and measures Alice, Bob, and their respective particles, he will find that everyone still agrees, because his own “coherence-operator” demands that

{\displaystyle M_{C}(A)=M_{C}(\alpha )} and {\displaystyle M_{C}(B)=M_{C}(\beta )}

while knowledge that the particles were in a singlet state tells him that

{\displaystyle M_{C}(\alpha )+M_{C}(\beta )=0.}

Thus the relational interpretation, by shedding the notion of an “absolute state” of the system, allows for an analysis of the EPR paradox which neither violates traditional locality constraints, nor implies superluminal information transfer, since we can assume that all observers are moving at comfortable sub-light velocities. And, most importantly, the results of every observer are in full accordance with those expected by conventional quantum mechanics.

— Wikipedia on Relational quantum mechanics

.

.

2018.10.22 Monday ACHK

The Sixth Sense, 3

Mirror selves, 2 | Anatta 3.2 | 無我 3.2

.

You cannot feel your own existence or non-existence. You can feel the existence or non-existence of (such as) your hair, your hands, etc.

But you cannot feel the existence or non-existence of _you_.

— Me@2018-03-17 5:12 PM

.

Only OTHER people or beings can feel your existence or non-existence.

— Me@2018-04-30 11:29:08 AM

.

.

2018.04.30 Monday (c) All rights reserved by ACHK