多項選擇題 6

Multiple Choices 6

這段改編自 2010 年 8 月 24 日的對話。

.

有時,一題物理 MC(多項選擇題)會,同時有數學做法和物理做法。

那時,你就先用物理方法做一次,再用數學方法做多一次,以作驗算。

(問:哪有那麼多的時間?)

之前講過,那些做法,必須透過考試前,平日多加收集和練習而來;並不是在考試中途,才花額外時間發明。

— Me@2018-05-22 06:02:40 PM

.

.

2018.05.22 Tuesday (c) All rights reserved by ACHK

背誦量

全像記憶 3

這段改編自 2010 年 8 月 11 日的對話。

.

(TK: 運算機會率題目時,如何提升準確度?)

九成九是靠背誦 —— 背誦眾多運算方法,和萬千驗算技巧。當然,我不是要你「死背」,而是要你「生背」,即是明白以後才背。

千萬不要企圖,自己發明任何方法。一來,你未有那些智力。二來,即使有,你也負擔不到那些時間。

只有數學家才會,負擔得起那些智力,和那些時間。

.

(TK: 其實我是有背的,但是,時常也誤中副車,差一點才能想中正確方法。)

或者說,你背得不夠多,或者不夠詳細。我所指的「背」,其實份量是十分驚人的。

例如,假設考試有可能出現的機會率題目,總共有 5 類。我並不是說,你每類也背誦一題的方法,就可以奪得好成績。

實際上,你的背誦量,並不只是 5 題,而隨時可能是 50 題,因為,同一種題目,可以有(例如)10 種不同的問法。

那 10 種題形的應對方法(和對應的驗算技巧),你都要背誦,因為,同一種題目,你要背誦了它,很多不同的版本,才會領略到,背後的精髓。那你才可以做到「明白以後才背」,即是「生背」。

如果你一定要成績奪 A,背誦量是十分驚人的。所以,我多次提醒你,你在每次做 past paper(以往試題),或其他練習之前,也一次要先背誦你的「魔法筆記」。

.

「背」的意思並不是說,你把「魔法筆記」,由頭至尾,閱讀一次就算。「背」的真正意思是,要你做到「過目不忘」,即是,在平日做練習,或者考試時,你都可以在心裡翻查,筆記上的每一頁,每一個細節。

— Me@2014.10.05

.

.

2014.10.06 Monday (c) All rights reserved by ACHK

機會率驗算 1.2

這段改編自 2013 年 12 月 16 日的對話。

(問:在運算機會率題目時,怎樣可以知道,自己的思路有沒有錯呢?)

一方面,你盡量在每一題的機會率題目,也同時使用「P 方法」和「S 方法」,互作驗算。

另一方面,在用「P 方法」時,如果面對的是稍為複雜的題目,你要重點留意的,是畫好 Tree Diagram(樹形圖)。Tree Diagram 雖然是最原始,但同時亦是最有效的,機會率思考工具。

— Me@2013.12.24

2013.12.24 Tuesday (c) All rights reserved by ACHK

機會率驗算 1.1

這段改編自 2013 年 12 月 16 日的對話。

有一個箱子,內裡有三顆骰子。三顆之中,只有一顆是「公平骰子」,有 1、2、3、4、5、6 六面。另外的兩顆,每一顆有 0、0、1、1、2、2 六面。假設對於三顆骰子中的每一顆而言,每一面出現的機會率都是六分之一。那樣,如果從那箱子中,隨機抽兩顆出來,然後再擲的話,擲到兩顆都是 2 的機會率是多少?

做機會率題目的主要難處是,好像沒有步驟可言,導致很難檢驗,自己的思考有沒有漏洞。所以,做機會率的題目時,一定要驗算。而驗算的方法就是,用兩個完全不同的方法去做。如果它們都得出同樣的答案,錯的機會就很微。對於機會率題目而言,建議同時使用「P 方法」和「S 方法」,互作校對。

「P 方法」的意思是 Probability(機會率)方法,即是將幾個 probability 分數乘在一起,從而得到最終的機會率分數。

「S 方法」的意思是 Statistics(統計學)方法,即是透過 counting(點數)去運算;由此至終,只寫一個分數 —— 將所有可能性放在分數,然後再將你想要的可能性,放在分子。

以這題為例:

~~~

P 方法:

透過 Tree Diagram(樹形圖),可以得出:

P(三顆骰抽兩顆,然後兩顆都擲到 2)

= (1/3)(1/6)(1)(1/3) + (2/3)(1/3)[(1/2)(1/6) + (1/2)(1/3)]

= …

= 2/27

~~~

S 方法:

一個大分數

= (分子)/(分母)

= 想要的可能性/所有的可能性

所有的可能性 = 三顆骰子選兩顆 x 每顆有六面 = (3C2)(6)(6) = 108

(「3C2」即是「3 選 2」;「3 選 2」有 3 個可能性。

想要的可能性 = 二粒都是 2

= 1×2 (抽到一顆骰子正常,一顆不正常)+ 1×2(抽到一顆正常,和抽到另一顆的不正常骰子)+ 2×2(兩顆骰子也不正常)

= 8

所以,

P(三顆骰抽兩顆,然後兩顆都擲到 2)

= 8/108

= 2/27

「S 方法」所得出的答案

= 2/27

= 「P 方法」所得出的答案

所以,這題機會率的運算,錯的機會就很微。

— Me@2013.12.20

2013.12.21 Saturday (c) All rights reserved by ACHK

逃避問題 1.2

這段改編自 2010 年 7 月 27 日的對話。

例如,有一隻獅子,正在追殺你。你總不能說:「千萬不要逃避問題。我一定面對問題,和獅子搏鬥一番。」

如果有獅子正在追殺你,最恰當的「面對」方法應該是,立刻逃走。

又例如,這一題微分題目,正常來說,要用 quotient rule(除法定則)才能完成。但是,quotient rule 的外表,又異常複雜。那樣,你可以考慮避開它,改為使用 product rule(乘積法則)。凡是 quotient rule 可以處理的東西,原則上,product rule 都可以處理得到。例如,你可以把

\frac{d}{dx} \left( \frac{\sin x}{x} \right)

看成

\frac{d}{dx} \left[ (\sin x) \left( \frac{1}{x} \right) \right]

但是有些時候,即使你可以逃避,都應該刻意不逃避,因為有些時候,quotient rule 雖然會複雜一點,但又的確會快過 product rule 很多。

而最理想的情況是,你兩種方法也駕馭自如,在處理同一題時,可以兩種方法也用,各自運算一次,互作驗算。

— Me@2013.12.04

2013.12.04 Wednesday (c) All rights reserved by ACHK