Functional Differential Geometry
.
Newton’s equations:
Coordinate path :
What is ?
It is a coordinate system on the manifold .
What is ?
It is a parametric path.
(p.29) The integral curve of
is a parametric path on
satisfying
What is ?
(p.22) Let
be a point on a manifold,
be a vector on the manifold, and
be a real-valued function on the manifold.
(define R5 (make-manifold R^n 5)) (define U5 (patch 'origin R5)) (define R5-rect (coordinate-system 'rectangular U5)) (define R5-rect-chi-inverse (point R5-rect)) (define R5-rect-point (R5-rect-chi-inverse (up 't 'x 'y 'v_x 'v_y))) (define-coordinates (up t x y v_x v_y) R5-rect) (define v5 (literal-vector-field 'b R5-rect)) (show-expression ((v5 (literal-manifold-function 'f_rect R5-rect)) R5-rect-point))
(show-expression ((v5 (chart R5-rect)) R5-rect-point))

(p.29) We can recover the differential equations satisfied by a coordinate representation of the integral curve by letting
.
(p.29)
where
is the coefficient function for the vector field
for the coordinates
(see equation 3.7).
(define R5->R (-> (UP Real Real Real Real Real) Real)) (print-expression ((literal-function 'f (-> (X Real Real) Real)) 'x 'y)) (define v5 (components->vector-field (up (lambda (b) 1) (lambda (b) (ref b 3)) (lambda (b) (ref b 4)) (lambda (b) ((literal-function 'A_x (-> (UP Real Real) Real)) (up (ref b 1) (ref b 2)))) (lambda (b) ((literal-function 'A_y (-> (UP Real Real) Real)) (up (ref b 1) (ref b 2))))) R5-rect)) (show-expression ((v5 (chart R5-rect)) R5-rect-point))

(series:for-each print-expression (((exp (* 't v5)) (chart R5-rect)) ((point R5-rect) (up 't 'x 'y 'v_x 'v_y))) 3) (series:for-each show-expression (((exp (* 't v5)) (chart R5-rect)) ((point R5-rect) (up 't 'x 'y 'v_x 'v_y))) 4)



(define ((((evolution order) delta-t v) f) m) (series:sum (((exp (* delta-t v)) f) m) order)) (show-expression ((((evolution 1) 'Delta_t v5) (chart R5-rect)) ((point R5-rect) (up 't_0 'x_0 'y_0 'v_x0 'v_y0))))

(show-expression ((((evolution 2) 'Delta_t v5) (chart R5-rect)) ((point R5-rect) (up 't_0 'x_0 'y_0 'v_x0 'v_y0))))

— Me@2023-07-21 08:12:30 PM
.
.
2023.07.23 Sunday (c) All rights reserved by ACHK


You must be logged in to post a comment.