Series can also be formed by processes such as exponentiation of an
operator or a square matrix. For example, if f is any function of one
argument, and if x and dx are numerical expressions, then this
expression denotes the Taylor expansion of f around x.
(((exp (* dx D)) f) x)
= (+ (f x) (* dx ((D f) x)) (* 1/2 (expt dx 2) (((expt D 2) f) x)) ...)
— refman
.
(((exp (* 'dx D)) (literal-function 'f)) 'x)
#| (*series* (0 . 0) (*number* (expression (f x)) (literal-function #[apply-hook 40]) (type-expression Real)) . #[promise 41 (unevaluated)]) |#
(show-expression (series:print (((exp (* 'dx D)) (literal-function 'f)) 'x)))
(f x) (* dx ((D f) x)) (* 1/2 (expt dx 2) (((expt D 2) f) x)) (* 1/6 (expt dx 3) (((expt D 3) f) x)) (* 1/24 (expt dx 4) (((expt D 4) f) x)) (* 1/120 (expt dx 5) (((expt D 5) f) x)) (* 1/720 (expt dx 6) (((expt D 6) f) x)) (* 1/5040 (expt dx 7) (((expt D 7) f) x)) (* 1/40320 (expt dx 8) (((expt D 8) f) x)) (* 1/362880 (expt dx 9) (((expt D 9) f) x)) (* 1/3628800 (expt dx 10) (((expt D 10) f) x)) (* 1/39916800 (expt dx 11) (((expt D 11) f) x)) (* 1/479001600 (expt dx 12) (((expt D 12) f) x)) (* 1/6227020800 (expt dx 13) (((expt D 13) f) x)) (* 1/87178291200 (expt dx 14) (((expt D 14) f) x)) ;Aborting!: maximum recursion depth exceeded
— Me@2023-12-20 11:30:50 AM
.
.
2023.12.20 Wednesday (c) All rights reserved by ACHK