3 Vector Fields and One-Form Fields, 2.2

Functional Differential Geometry

.

p. 21

2.4

Let

\displaystyle{  \begin{aligned}    D_b(f)(x) &= ((Df)\bigg|_x b \bigg|_x \\   \end{aligned}  },

where \displaystyle{ b(x) } is a coordinate function.

p. 12

A coordinate function \displaystyle{\chi} maps points in a coordinate patch of a manifold to a coordinate tuple:

\displaystyle{x = \chi(\mathbf{m})},

where \displaystyle{x} may have a convenient tuple structure.

2.5

\displaystyle{  \begin{aligned}    \textbf{v}(\text{f})(\textbf{m}) &\ne D_b(f)(x) \\   \end{aligned}  }

Instead, \displaystyle{ \textbf{v}(\text{f})(\textbf{m})} is a further generalization of \displaystyle{ D_b(f)(x)}.

p. 25

The vector field \displaystyle{ \textbf{v} } has a coordinate representation \displaystyle{ v}:

\displaystyle{ \begin{aligned}  \textbf{v}(\text{f})(\textbf{m})  &= D( \textbf{f} \circ \chi^{-1})(\chi(\mathbf{m})) b(\chi(\mathbf{m})) \\   &= Df(x) b(x) \\   &= v(f)(x),   \end{aligned}  }

with the definitions \displaystyle{ f = \mathbf{f} \circ \chi^{-1} } and \displaystyle{ x = \chi (\mathbf{m}) }.

So, actually,

\displaystyle{  \begin{aligned}    \textbf{v}(\text{f})(\textbf{m})   &= D_b(f)(x) \\  &= ((D(f)) \bigg|_x) b \bigg|_x \\  &= (\nabla f)\bigg|_x \cdot \vec b\bigg|_x \\  \end{aligned}  }

2.6

While \displaystyle{ x } is the tuple of coordinate components of a point, \displaystyle{ \textbf{m} } is the abstract point itself.

.

3.1

… ; they measure how quickly the coordinate functions change in the direction of the vector field, scaled by the magnitude of the vector field: …

\displaystyle{  \begin{aligned}      b^i_{\chi, \mathbf{v}} &= \mathbf{v}(\chi^i) \circ \chi^{-1} \\   \end{aligned}  }

\displaystyle{  \chi     } inputs an abstract point and outputs its coordinates.

The first factor \displaystyle{ \mathbf{v}(\chi^i) } is just the meaning of the definition of \displaystyle{ b^i_{\chi, \mathbf{v}} }. The second factor is needed because the input of \displaystyle{ b^i_{\chi, \mathbf{v}} } is \displaystyle{    x \\  }, not \displaystyle{    \mathbf{m} \\  }.

\displaystyle{  \begin{aligned}      b^i_{\chi, \mathbf{v}} (x)   &= \mathbf{v}(\chi^i) (\mathbf{m}) \\  &= \mathbf{v}(\chi^i) ( \chi^{-1} (\chi (\mathbf{m}))) \\  &= \mathbf{v}(\chi^i) \circ \chi^{-1} (x) \\   \end{aligned}  }

In other words, \displaystyle{ \mathbf{v}(\chi^i) (\mathbf{m}) \\ } is just the definition of \displaystyle{ b^i_{\chi, \mathbf{v}} (x) }.

3.2

\displaystyle{ \textbf{v}(\text{f})(\textbf{m})} is the direction derivative of the function \displaystyle{\text{f}} at the point \displaystyle{ \textbf{m} }.

Note that it is not the ordinary directional derivative.

3.2.1

Instead, the ordinary directional derivative is

\displaystyle{(Df(x)) \Delta x}

or

\displaystyle{\begin{aligned}  D_{\mathbf{v}}(f)    &= \frac{\left(\delta f\right)_{\mathbf{v}}}{|\mathbf{v}|} &= \left(\nabla f\right) \cdot \hat{\mathbf{v}} \\  \end{aligned}}

3.2.2

The generalization of directional derivative is replacing \displaystyle{\Delta x}, a vector independent of \displaystyle{x}, with \displaystyle{b(x)}, a vector function of \displaystyle{x}.

— Me@2024-02-03 04:45:17 PM

.

.

2024.02.08 Thursday (c) All rights reserved by ACHK