Functional Differential Geometry
.
p. 22
Eq. (3.4):
(define (components->vector-field components coordsys) (define (v f) (compose (* (D (compose f (point coordsys))) components) (chart coordsys))) (procedure->vector-field v))
An example:
(define R2->R (-> (UP Real Real) Real)) (define v (components->vector-field (up (literal-function 'b^0 R2->R) (literal-function 'b^1 R2->R)) R2-rect)) (define R2-rect-chi-inverse (point R2-rect)) (define R2-rect-point (R2-rect-chi-inverse (up 'x_0 'y_0))) ((v (literal-manifold-function 'f-rect R2-rect)) R2-rect-point) (show-expression ((v (literal-manifold-function 'f-rect R2-rect)) R2-rect-point))

(define v (literal-vector-field 'b R2-rect)) (show-expression ((v (literal-manifold-function 'f-rect R2-rect)) R2-rect-point))
— Me@2024-08-10 07:06:38 AM
.
.
2024.08.10 Saturday (c) All rights reserved by ACHK
You must be logged in to post a comment.