Ex 3.2 Verification, 2.2

Functional Differential Geometry

.

Eq. (3.44):

\begin{aligned}  a_i(x)&=\boldsymbol{\omega}(\text{X}_i)(\chi^{-1}(x)) \\  &= (a' \circ \chi') \tilde{\text{X}'}(\text{X}_i) (\chi^{-1}(x)) \\ \\    \tilde{\text{X}}'(\text{X}_i) &= \tilde{\text{X}}(\text{X}_i) \left[ (D(\chi \circ (\chi')^{-1}) \circ \chi' \right]^{-1} \\ \\     a_i(x)  &= (a' \circ \chi')  \tilde{\text{X}}(\text{X}_i) \left[ D(\chi \circ (\chi')^{-1}) \circ \chi' \right]^{-1}  (\chi^{-1}(x)) \\   &= \sum_j (a'_j \circ \chi') \tilde{\text{X}^j}(\text{X}_i) \left[ D(\chi \circ (\chi')^{-1}) \circ \chi' \right]^{-1}  (\chi^{-1}(x)) \\   &= (a'_i \circ \chi')  \left[ D(\chi \circ (\chi')^{-1}) \circ \chi' \right]^{-1}  (\chi^{-1}(x)) \\     \end{aligned}

\begin{aligned}  a_i(\chi(\mathbf{m}))  &= (a'_i \circ \chi')  \left[ D(\chi \circ (\chi')^{-1}) \circ \chi' \right]^{-1}  (\mathbf{m}) \\     &= (a'_i (\chi'(\mathbf{m})))  \left[ D(\chi \circ (\chi')^{-1}) (\chi'(\mathbf{m}))) \right]^{-1}   \\     \end{aligned}

— Me@2024-10-25 06:31:16 AM

.

.

2024.11.10 Sunday (c) All rights reserved by ACHK