4 Basis Fields, 1

Functional Differential Geometry

.

3.1

… ; they measure how quickly the coordinate functions change in the direction of the vector field, scaled by the magnitude of the vector field: …

\begin{aligned}  b^i_{\chi, \mathbf{v}} &= \mathbf{v}(\chi^i) \circ \chi^{-1}   \end{aligned}

The first factor \mathbf{v}(\chi^i) is just the meaning of the definition of b^i_{\chi, \mathbf{v}}. The second factor is needed because the input of b^i_{\chi, \mathbf{v}} is x, not \mathbf{m}.

\begin{aligned}  b^i_{\chi, \mathbf{v}} (x)   &= \mathbf{v}(\chi^i) (\mathbf{m}) \\  &= \mathbf{v}(\chi^i) ( \chi^{-1} (\chi (\mathbf{m}))) \\  &= \mathbf{v}(\chi^i) \circ \chi^{-1} (x)   \end{aligned}

In other words, \mathbf{v}(\chi^i) (\mathbf{m}) is just the definition of b^i_{\chi, \mathbf{v}} (x).

.

3.2 p. 21

\displaystyle{ \textbf{v}(\text{f})(\textbf{m})} is the direction derivative of the function \displaystyle{\text{f}} at the point \displaystyle{ \textbf{m} }.

.

3.3 p. 22 Eq. (3.4):

\displaystyle{ \begin{aligned}  \textbf{v}(\text{f})(\textbf{m})  &= (D( \textbf{f} \circ \chi^{-1}) b_{\chi,\mathbf{v}}) \circ \chi)(\textbf{m}) \\  \end{aligned} }

.

4.1 p. 41 Eq. (4.1):

\displaystyle{ \textbf{v}(\text{f})(\textbf{m})    = \textbf{e}(\textbf{f})(\textbf{m})\textbf{b}(\textbf{m}) = \sum_{i} \textbf{e}_i (\textbf{f})(\textbf{m}) \textbf{b}^i(\textbf{m})}

In other words, \textbf{b}^i‘s and \textbf{e}_i‘s represent the amount and direction of changes respectively.

.

4.2 p. 33

A one-form field is a generalization of this idea; it is something that measures a vector field at each point.

One-form fields are linear functions of vector fields that produce real-valued functions on the manifold.

— Me@2025-01-17 03:59:54 PM

.

.

2025.01.19 Sunday (c) All rights reserved by ACHK