Haskell
------------------------------
primes = 2 : filter (null . tail . primeFactors) [3,5..]
primeFactors n = factor n primes
where
factor n (p:ps)
| p*p > n = [n]
| n `mod` p == 0 = p : factor (n `div` p) (p:ps)
| otherwise = factor n ps
list_max (x:xs) = lmf x xs
where
lmf x [] = x
lmf x xs | (x >= (head xs)) = lmf x (tail xs)
| otherwise = lmf (head xs) (tail xs)
elemInd y [] = -1
elemInd y (x:xs) = ei 0 y (x:xs)
where
ei n y (x:xs)
| (x == y) = n
| (null xs) = -1
| otherwise = ei (n+1) y xs
b_list = takeWhile (<= 1000) primes
isPrime x | x <= 1 = False
| otherwise = null $ tail (primeFactors x)
cPrimeLen [a, b] = [m, a, b]
where m = length $ takeWhile (== True) $ map (isPrime . (\n -> n^2 + a*n + b)) [0..]
p27_list = [cPrimeLen [a, b] | a <- [-n..n], b <- b_list] where n = 1000
p27_n = map head p27_list
p27 = p27_list !! (elemInd (list_max p27_n) p27_n)
-- 71, a == -61, b == 971
------------------------------
— Me@2015-06-19 10:01:22 PM
2015.06.20 Saturday (c) All rights reserved by ACHK