Quantum entanglement, 4

What’s sneaky about quantum mechanics is that the whole system can be in a pure state which when restricted to each subsystem gives a mixed state, and that these mixed states are then correlated (necessarily, as it turns out). That’s what “entanglement” is all about.

The first way things get trickier in quantum mechanics is that something we are used to in classical mechanics fails. In classical mechanics, pure states are always dispersion-free — that is, for every observable, the probability measure assigned by the state to that observable is a Dirac delta measure, that is, the observable has a 100% chance of being some specific value and a 0% chance of having any other value. (Consider the example of the dice, with the observable being the number of dots on the face pointing up.) In quantum mechanics, pure states need NOT be dispersion-free. In fact, they usually aren’t.

A second, subtler way things get trickier in quantum mechanics concerns systems made of parts, or subsystems. Every observable of a subsystem is automatically an observable for the whole system (but not all observables of the whole system are of that form; some involve, say, adding observables of two different subsystems). So every state of the whole system gives rise to, or as we say, “restricts to,” a state of each of its subsystems. In classical mechanics, pure states restrict to pure states. For example, if our system consisted of 2 dice, a pure state of the whole system would be something like “the first die is in state 2 and the second one is in state 5;” this restricts to a pure state for the first die (state 2) and a pure state for the second die (state 5). In quantum mechanics, it is not true that a pure state of a system must restrict to a pure state of each subsystem.

It is this latter fact that gave rise to a whole bunch of quantum puzzles such as the Einstein-Podolsky-Rosen puzzle and Bell’s inequality. And it is this last fact that makes things a bit tricky when one of the two subsystems happens to be you. It is possible, and indeed very common, for the following thing to happen when two subsystems interact as time passes. Say the whole system starts out in a pure state which restricts to a pure state of each subsystem. After a while, this need no longer be the case! Namely, if we solve Schroedinger’s equation to calculate the state of the system a while later, it will necessarily still be a pure state (pure states of the whole system evolve to pure states), but it need no longer restrict to pure states of the two subsystems. If this happens, we say that the two subsystems have become “entangled.”

— December 16, 1993

— This Week’s Finds in Mathematical Physics (Week 27)

— John Baez



2020.07.19 Sunday ACHK