Structure and Interpretation of Classical Mechanics
.
A bead of mass m moves without friction on a triaxial ellipsoidal surface. In rectangular coordinates the surface satisfies
for some constants a, b, and c. Identify suitable generalized coordinates, formulate a Lagrangian, and find Lagrange’s equations.
~~~
[guess]
The generalized coordinates:
where
.
(define ((F->C F) local)
(->local (time local)
(F local)
(+ (((partial 0) F) local)
(* (((partial 1) F) local)
(velocity local)))))
;
(define ((e->r a b c) local)
(let ((q (coordinate local)))
(let ((theta (ref q 0))
(phi (ref q 1)))
(let ((x (* a (sin theta) (cos phi)))
(y (* b (sin theta) (sin phi)))
(z (* c (cos theta))))
(up x y z)))))
;
(define ((L-rect m) local)
(let ((q (coordinate local))
(v (velocity local)))
(* 1/2 m (square v))))
(define (L-e m a b c)
(compose (L-rect m) (F->C (e->r a b c))))
;
(show-expression
((L-e 'm 'a 'b 'c)
(->local 't
(up 'theta 'phi)
(up 'thetadot 'phidot))))
;
(show-expression
(((Lagrange-equations
(L-e 'm 'a 'b 'c))
(up (literal-function 'theta) (literal-function 'phi)))
't))
[guess]
— Me@2021-03-01 06:22:50 PM
.
.
2021.03.02 Tuesday (c) All rights reserved by ACHK