Ex 1.29 A particle of mass m slides off a horizontal cylinder, 1.3

Structure and Interpretation of Classical Mechanics

.

\displaystyle{\begin{aligned}      \dot \theta^2   &= \pm \frac{2 g (\beta \sin \theta - \cos \theta) }{R (\beta^2 + 1)} +  \pm \frac{2 g }{R (\beta^2 + 1)}   e^{-\beta \theta}   \\    &= \pm \frac{2 g }{R (\beta^2 + 1)} \left[ \beta \sin \theta - \cos \theta + e^{-\beta \theta} \right] \\    \end{aligned}}

Let us reconsider the equation of motion along the normal direction:

\displaystyle{\begin{aligned} m g \cos \theta - F_R &= \frac{m v^2}{R} \\ \end{aligned}},

where \displaystyle{F_R} is the normal reaction force.

.

When the mass m leaves the cylinder with \theta=\theta_1, F_R = 0.

\displaystyle{\begin{aligned}     m g \cos \theta_1 &= \frac{m R^2 \dot \theta^2}{R} \\     \dot \theta^2 &= \frac{g}{R} \cos \theta_1 \\     \\          \frac{g}{R} \cos \theta_1  &= \pm \frac{2 g }{R (\beta^2 + 1)} \left[ (\beta \sin \theta - \cos \theta) + e^{-\beta \theta} \right] \\           (1+ \beta^2) \cos \theta_1  &=  2 \left| ( \beta \sin \theta_1 - \cos \theta_1 + e^{-\beta \theta_1} ) \right| \\     \end{aligned}}

If there is no air resistance, \beta = 0,

\displaystyle{\begin{aligned}     (1+ \beta^2) \cos \theta_1  &=  2 \left| ( \beta \sin \theta_1 - \cos \theta_1 + e^{-\beta \theta_1} ) \right| \\     \cos \theta_1  &=  2 ( 1 - \cos \theta_1) \\     \cos \theta_1  &=  \frac{2}{3}  \\       \end{aligned}}

— Me@2023-05-23 11:02:25 AM

.

.

2023.06.15 Thursday (c) All rights reserved by ACHK