3.5 Calculating the divergence in higher dimension

A First Course in String Theory

.

Let \displaystyle{\vec f = f(r) \hat{\mathbf{r}}} be a vector function in \displaystyle{\mathbb{R}^d}.

Derive a formula for \displaystyle{\nabla \cdot \vec f} by applying the divergence theorem to a spherical shell of a radius \displaystyle{r} and width \displaystyle{dr}.

~~~

Volume and sphere area of an \displaystyle{n}-ball:

\displaystyle{    \begin{aligned}  V_{n}(R)&={\frac {\pi ^{\frac {n}{2}}}{\Gamma \left({\frac {n}{2}}+1\right)}}R^{n} \\    S_{n-1}(R)&={\frac {2\,\pi ^{\frac {n}{2}}}{\Gamma \left({\frac {n}{2}}\right)}}R^{n-1}  \end{aligned} \\     }

Divergence theorem:

\displaystyle{  \int_V \nabla \cdot \vec f dV   = \int_S \vec f \cdot \hat n dS   }

.

Let \displaystyle{V} be a spherical shell of radius \displaystyle{r} and width \displaystyle{dr}. Then

\displaystyle{    \begin{aligned}    \int_V \nabla \cdot \vec f dV     &= \left. \nabla \cdot \vec f \right|_r \int_V  dV \\     &= \left. \nabla \cdot \vec f \right|_r \left( S_{n-1}(r) dr \right) \\    \end{aligned} \\   }

and

\displaystyle{    \begin{aligned}    \int_S \vec f \cdot \hat n dS     &= f(r+dr) S_{n-1}(r+dr) - f(r) S_{n-1}(r) \\    \end{aligned} \\   }

.

So

\displaystyle{    \begin{aligned}    \left. \nabla \cdot \vec f \right|_r S_{n-1}(r) dr     &= f(r+dr) S_{n-1}(r+dr) - f(r) S_{n-1}(r) \\    \end{aligned} \\   }

\displaystyle{    \begin{aligned}    \left. \nabla \cdot \vec f \right|_r     &= \frac{1}{S_{n-1}(r)} \frac{f(r+dr) S_{n-1}(r+dr) - f(r) S_{n-1}(r)}{dr} \\    &= \frac{1}{S_{n-1}(r)} \frac{d}{dr} \bigg( f(r) S_{n-1}(r) \bigg) \\    &= \frac{1}{r^{n-1}} \frac{d}{dr} \bigg( r^{n-1} f(r) \bigg) \\      \end{aligned} \\   }

— Me@2023-08-02 09:28:32 AM

.

.

2023.08.02 Wednesday (c) All rights reserved by ACHK