Structure and Interpretation of Classical Mechanics
.
A spherical pendulum is a massive bob, subject to uniform gravity, that may swing in three dimensions, but remains at a given distance from the pivot.
Formulate a Lagrangian for a spherical pendulum, driven by vertical motion of the pivot.
…
~~~
How come [the equations]?
Maybe just using the above equation but set the constant. But I have
to add a something in order to realize the moving center.
— Me@2006
.
[guess]
(define (KE-particle m v) (* 1/2 m (square v))) (define ((extract-particle pieces) local i) (let* ((indices (apply up (iota pieces (* i pieces)))) (extract (lambda (tuple) (vector-map (lambda (i) (ref tuple i)) indices)))) (up (time local) (extract (coordinate local)) (extract (velocity local))))) (define (U-constraint R qs q lambd) (* lambd (- (square (- q qs)) (square R)))) (define ((U-gravity g m) q) (let ((z (ref q 2))) (* m g z))) (define ((L-rect m R qs U) local) (let* ((extract (extract-particle 3)) (p (extract local 0)) (t (time p)) (q (coordinate p)) (v (velocity p)) (lambd (ref (coordinate local) 3))) (- (KE-particle m v) (U q) (U-constraint R (qs t) q lambd)))) (let* ((U (U-gravity 'g 'm)) (xs (lambda (t) 0)) (ys (lambda (t) 0)) (zs (literal-function 'z_s)) (qs (up xs ys zs)) (L (L-rect 'm 'R qs U)) (q-rect (up (literal-function 'x) (literal-function 'y) (literal-function 'z) (literal-function 'lambda)))) (show-expression ((compose L (Gamma q-rect)) 't)))
(+ (* (expt R 2) (lambda t)) (* -1 g m (z t)) (* 1/2 m (expt ((D x) t) 2)) (* 1/2 m (expt ((D y) t) 2)) (* 1/2 m (expt ((D z) t) 2)) (* -1 (lambda t) (expt (z_s t) 2)) (* 2 (lambda t) (z_s t) (z t)) (* -1 (lambda t) (expt (z t) 2)) (* -1 (lambda t) (expt (y t) 2)) (* -1 (lambda t) (expt (x t) 2)))
(define ((sf->rf qs) state-with-force) (let* ((extract (extract-particle 3)) (p (extract state-with-force 0)) (t (time p)) (q (coordinate p)) (lambd (ref (coordinate state-with-force) 3)) (r (ref q 0)) (theta (ref q 1)) (phi (ref q 2)) (xs (ref qs 0)) (ys (ref qs 1)) (zs (ref qs 2)) (x (+ (xs t) (* r (sin theta) (cos phi)))) (y (+ (ys t) (* r (sin theta) (sin phi)))) (z (+ (zs t) (* r (cos theta))))) (up x y z lambd))) (let* ((xs (literal-function 'x_s)) (ys (literal-function 'y_s)) (zs (literal-function 'z_s)) (qs (up xs ys zs)) (q (up (literal-function 'r) (literal-function 'theta) (literal-function 'phi) (literal-function 'lambda)))) (show-expression ((compose (sf->rf qs) (Gamma q)) 't)))

(define ((F->C F) local) (->local (time local) (F local) (+ (((partial 0) F) local) (* (((partial 1) F) local) (velocity local))))) (define (L-driven m R qs U) (compose (L-rect m R qs U) (F->C (sf->rf qs))))
…
[guess]
— Me@2023-08-20 05:02:09 PM
.
.
2023.08.23 Wednesday (c) All rights reserved by ACHK
You must be logged in to post a comment.