3.6 Analytic continuation for gamma function, 1

A First Course in String Theory

.

\displaystyle{      \begin{aligned}        \Gamma (z)   =     &\int_{0}^{1}dt~t^{z-1} \left( e^{-t} - \sum_{n=0}^N \frac{(-t)^n}{n!} \right) \\    &+ \sum_{n=0}^N \frac{(-t)^n}{n!} \frac{1}{z+n}     + \int_1^\infty dt~e^{-t}t^{z-1} \\    \end{aligned} \\   }

Explain why the above right-hand side is well defined for \displaystyle{   \Re (z) > - N - 1  }.

~~

\displaystyle{      \begin{aligned}        \Gamma (z) &= \int_{0}^{\infty}t^{z-1}e^{-t}dt \\    &= - \int_{0}^{\infty}t^{z-1}de^{-t} \\    &= - \left[ t^{z-1} e^{-t} \right]_{0}^{\infty} + (z-1) \int_{0}^{\infty} t^{z-2}e^{-t} dt \\    &= - \left[ \lim_{t \to \infty} t^{z-1} e^{-t} - 0^{z-1} e^{-0} \right] + (z-1) \int_{0}^{\infty} t^{z-2}e^{-t} dt \\    \end{aligned} \\   }

Note that this can only prove that for convergence, it may be necessary to have \displaystyle{   \Re (z) > 1  }, but not \displaystyle{   \Re (z) > 0  }.

Also, the condition \displaystyle{   \Re (z) > 1  } may be not necessary at all, because an infinity in one term may be cancelled out by another infinity in a latter term.

.

\displaystyle{      \begin{aligned}        \Gamma (z) &= \int_{0}^{1}t^{z-1}e^{-t}dt + \int_{1}^{\infty}t^{z-1}e^{-t}dt \\\\    \end{aligned} \\   }

.

Prove that \displaystyle{      \int_{1}^{\infty}t^{z-1}e^{-t}dt      } converges.

Since \displaystyle{      \begin{aligned}     e^t &= \sum_{s=0}^\infty \frac{t^s}{s!}  \\   \end{aligned} \\   }, for any integer r \ge 0 and any real t > 0:

\displaystyle{      \begin{aligned}     e^t    &\ge \frac{t^r}{r!}  \\   \end{aligned}~~~}

— Me@2023-09-07 07:38:17 PM

.

.

2023.09.08 Friday (c) All rights reserved by ACHK