3.6 Analytic continuation for gamma function, 2

A First Course in String Theory

.

\displaystyle{  \begin{aligned}    \Gamma (z) &= \int_{0}^{1}t^{z-1}e^{-t}dt + \int_{1}^{\infty}t^{z-1}e^{-t}dt \\\\    \end{aligned} \\ }

.

Prove that \displaystyle{\int_{1}^{\infty}t^{z-1}e^{-t}dt} converges.

Since \displaystyle{  \begin{aligned}  e^t &= \sum_{s=0}^\infty \frac{t^s}{s!} \\  \end{aligned} \\ },

for any integer r \ge 0 and any real t > 0,

\displaystyle{  \begin{aligned}  e^t  &\ge \frac{t^r}{r!} \\  \end{aligned}~~~}

Then

\displaystyle{  \begin{aligned}    e^{-t} &\le \frac{1}{\frac{t^r}{r!}} \\    \end{aligned} \\ }

Let \displaystyle{  \begin{aligned}  x &= \Re(z) \\  \end{aligned} \\ }:

\displaystyle{  \begin{aligned}    t^{x-1}e^{-t} &\le \frac{t^{x-1}}{\frac{t^r}{r!}} \\    t^{x-1}e^{-t} &\le r! t^{x - r - 1} \\    \end{aligned} \\ }

.

By choosing an r such that r \ge 1 and r \ge \Re(z) + 1,

for any t \ge 1,

\displaystyle{  \begin{aligned}    t^{x-1}e^{-t} &\le r! t^{x - (x+1) - 1} \\    t^{x-1}e^{-t} &\le r! t^{-2} \\    \end{aligned} \\ }

Therefore,

\displaystyle{  \begin{aligned}    \int_1^\infty t^{x-1}e^{-t} dt    &\le r! \int_1^\infty t^{-2} dt    = - r! [ t^{-1} ]_1^\infty    = r! \\    \end{aligned} \\ }

In other words, for any complex z ,

\displaystyle{  \begin{aligned}    \left| \int_1^\infty t^{z-1} e^{-t} dt \right|    &\le r! \\    \end{aligned} \\ }

for some r such that r \ge 1 and r \ge \Re(z) + 1.

So

\displaystyle{  \begin{aligned}    \left| \int_1^\infty t^{z-1} e^{-t} dt \right|    &\le r! \\    \end{aligned} \\ }

converges for any z .

.

Prove that \displaystyle{\int_{0}^{1}t^{z-1}e^{-t}dt} converges.

— Me@2023-09-07 07:38:17 PM

.

.

2023.10.08 Sunday (c) All rights reserved by ACHK