3.6 Analytic continuation for gamma function, 4

A First Course in String Theory

.

Explain why the above right-hand side is well defined for \displaystyle{  \Re (z) > - N - 1  }.

~~

\displaystyle{  \begin{aligned}    \Gamma (z) &= \int_{0}^{1}t^{z-1}e^{-t}dt + \int_{1}^{\infty}t^{z-1}e^{-t}dt \\\\    \end{aligned} \\ }

.

Prove that \displaystyle{\int_{1}^{\infty}t^{z-1}e^{-t}dt} converges.

Prove that \displaystyle{\int_{0}^{1}t^{z-1}e^{-t}dt} converges.

Under this condition,

\displaystyle{ \begin{aligned} &\int_{0}^{1}t^{z-1}e^{-t}dt \end{aligned}  }
\displaystyle{   = \int_{0}^{1} t^{z-1} \left( \sum_{n=0}^N \frac{(-t)^n}{n!} +\sum_{n=N+1}^\infty \frac{(-t)^n}{n!} \right) dt, }
\displaystyle{   = \int_{0}^{1} t^{z-1} \sum_{n=0}^N \frac{(-t)^n}{n!} dt + \int_{0}^{1} t^{z-1} \sum_{n=N+1}^\infty \frac{(-t)^n}{n!} dt}

\displaystyle{   = \sum_{n=0}^N  \frac{(-1)^n}{n!} \frac{1}{z+n} + \int_{0}^{1} t^{z-1} \sum_{n=N+1}^\infty \frac{(-t)^n}{n!} dt}

So for \displaystyle{\Re (z) > 0},

\displaystyle{  \begin{aligned}  &\Gamma (z) \\  &= \int_{0}^{\infty}t^{z-1}e^{-t}dt \\  &= \int_{0}^{1}t^{z-1}e^{-t}dt + \int_{1}^{\infty}t^{z-1}e^{-t}dt \\  &= \sum_{n=0}^N  \frac{(-1)^n}{n!} \frac{1}{z+n}   + \int_{0}^{1} t^{z-1} \sum_{n=N+1}^\infty \frac{(-t)^n}{n!} dt + \int_{1}^{\infty}t^{z-1}e^{-t}dt \\  \end{aligned} \\ }

If we define this as the analytic continuation of Gamma function:

\displaystyle{  \begin{aligned}  \Gamma_c (z)   \end{aligned} \\ }

\displaystyle{  \begin{aligned}  = \sum_{n=0}^N  \frac{(-1)^n}{n!} \frac{1}{z+n}   + \int_{0}^{1} t^{z-1} \sum_{n=N+1}^\infty \frac{(-t)^n}{n!} dt + \int_{1}^{\infty}t^{z-1}e^{-t}dt \\  \end{aligned} \\ },

its convergence depends on the convergence of the middle term:

\displaystyle{  \begin{aligned}  \int_{0}^{1} t^{z-1} \sum_{n=N+1}^\infty \frac{(-t)^n}{n!} dt \\  \end{aligned} \\ }

By the argument above, a necessary condition for this term to converge is

\displaystyle{  \Re (z) + n_{\text{min}} > 0  }

So

\displaystyle{  \Re (z) + N + 1 > 0  }

\displaystyle{  \Re (z) > - N - 1   }

However, besides the integral convergence, we have to consider also the summation convergence.

.

To check whether the order of integration and summation can be interchanged, we rewrite the term as

\displaystyle{  \begin{aligned}  &\int_{0}^{1} t^{z-1} \sum_{n=N+1}^\infty \frac{(-t)^n}{n!} dt \\  &= \int_{0}^{1} t^{z-1} \left( e^{-t} - \sum_{n=0}^N \frac{(-t)^n}{n!} \right) dt \\  \end{aligned} \\ }

Since both \displaystyle{e^{-t}} and \displaystyle{\sum_{n=0}^N \frac{(-t)^n}{n!}} are finite, \displaystyle{  \begin{aligned}  \sum_{n=N+1}^\infty \frac{(-t)^n}{n!} dt   \end{aligned} \\ } is also finite.

— Me@2023-09-07 07:38:17 PM

.

.

2024.01.10 Wednesday (c) All rights reserved by ACHK