3.6 Analytic continuation for gamma function, 5

A First Course in String Theory

.

Explain why the above right-hand side is well defined for \displaystyle{  \Re (z) > - N - 1  }.

~~

\displaystyle{  \begin{aligned}    \Gamma (z) &= \int_{0}^{1}t^{z-1}e^{-t}dt + \int_{1}^{\infty}t^{z-1}e^{-t}dt \\\\    \end{aligned} \\ }

.

Prove that \displaystyle{\int_{1}^{\infty}t^{z-1}e^{-t}dt} converges.

Prove that \displaystyle{\int_{0}^{1}t^{z-1}e^{-t}dt} converges.

Since both \displaystyle{e^{-t}} and \displaystyle{\sum_{n=0}^N \frac{(-t)^n}{n!}} are finite, \displaystyle{  \begin{aligned}  \sum_{n=N+1}^\infty \frac{(-t)^n}{n!} dt   \end{aligned} \\ } is also finite.

So

\displaystyle{  \begin{aligned}  &\int_{0}^{1} t^{z-1} \sum_{n=N+1}^\infty \frac{(-t)^n}{n!} dt \\  &= \sum_{n=N+1}^\infty \int_{0}^{1} t^{z-1} \frac{(-t)^n}{n!} dt \\  \end{aligned} \\ }

\displaystyle{ \begin{aligned}   &= \sum_{n=N+1}^\infty \frac{(-1)^n}{n!} \frac{1}{z+n} \left[ 1 - 0^{z+n} \right] \\ \end{aligned} \\ }

This term converges as long as \displaystyle{  \Re (z) > - N - 1   }.

So this condition is not only necessary but also sufficient for the convergence of the analytic continuation of Gamma function,

\displaystyle{  \begin{aligned}  \Gamma_c (z)   &= \sum_{n=0}^N  \frac{(-1)^n}{n!} \frac{1}{z+n} \\  &+ \int_{0}^{1} t^{z-1} \left( e^{-t} - \sum_{n=0}^N \frac{(-t)^n}{n!} dt \right) + \int_{1}^{\infty}t^{z-1}e^{-t}dt \\  \end{aligned} \\ }

— Me@2023-09-07 07:38:17 PM

.

.

2024.02.21 Wednesday (c) All rights reserved by ACHK