Quick Calculation 13.3

A First Course in String Theory

.

Justify UHU^{-1} = H directly from the oscillator expansion of H = L_0^\perp + \bar L_0^\perp -2 .

~~~

Eq. (13.37):

\displaystyle{  \begin{aligned}  \bar L_n^\perp &= \frac{1}{2} \sum_{p \in \mathbf{Z}} \bar \alpha_p^I \bar \alpha_{n-p}^I\text{,}   ~~~L_n^\perp = \frac{1}{2} \sum_{p \in \mathbf{Z}} \alpha_p^I \alpha_{n-p}^I\text{.} \\  \end{aligned}  }

So

\displaystyle{  \begin{aligned}  \bar L_0^\perp &= \frac{1}{2} \sum_{p \in \mathbf{Z}} \bar \alpha_p^I \bar \alpha_{-p}^I\text{,}   ~~~L_0^\perp = \frac{1}{2} \sum_{p \in \mathbf{Z}} \alpha_p^I \alpha_{-p}^I\text{.} \\  \end{aligned}  }

.

Eq. (13.93):

\displaystyle{  \begin{aligned}  U x_0 U^{-1} &= -x_0 \text{,}~~~  U p U^{-1} = -p \text{,} \\  U \alpha_n U^{-1} &= -\alpha_n \text{,}~~~  U \bar \alpha_n U^{-1} = - \bar \alpha_n \text{,}   \end{aligned}  }

where n \ne 0.

.

Eq. (13.22):

\displaystyle{  \begin{aligned}  \alpha_0^\mu &= \sqrt{\frac{\alpha'}{2}} p^\mu \\  \end{aligned}  }

So

\displaystyle{  \begin{aligned}  U \alpha_0^\mu U^{-1} &= - \alpha_0^\mu \\  \end{aligned}  }

.

Eq. (13.17)

\displaystyle{  \begin{aligned}  \bar \alpha_0^\mu &= \alpha_0^\mu \\  \end{aligned}  }

So

\displaystyle{  \begin{aligned}  U \bar \alpha_0^\mu U^{-1} &= - \bar \alpha_0^\mu \\  \end{aligned}  }

— Me@2024-10-03 06:42:21 PM

.

.

2024.10.03 Thursday (c) All rights reserved by ACHK