Quick Calculation 13.5

A First Course in String Theory

.

Show that [ \bar{N}^\perp, \bar{\alpha}_{- \frac{q}{2}} ] = \frac{q}{2} \bar{\alpha}_{- \frac{q}{2}} and explain why \bar{N}^\perp is properly called a number operator.

~~~

\bar N^\perp = \sum_{p=1}^{\infty} \bar \alpha^i_{-p} \bar \alpha^i_{~p} + \sum_{k \in \mathbb{Z}^+_\text{odd}} \bar \alpha_{- \frac{k}{2}} \bar \alpha_{\frac{k}{2}}

Eq. (13.109):

\left[ \bar \alpha_{\frac{m}{2}}, \bar \alpha_{\frac{n}{2}} \right] = \frac{m}{2} \delta_{m+n, 0}

.

[AB,C]=A[B,C]+[A,C]B

\begin{aligned}  &[ \bar{N}^\perp, \bar{\alpha}_{- \frac{q}{2}} ] \\  &= \sum_{p=1}^{\infty} [ \bar \alpha^i_{-p} \bar \alpha^i_{~p}, \bar{\alpha}_{- \frac{q}{2}} ] + \sum_{k \in \mathbb{Z}^+_\text{odd}} [ \bar \alpha_{- \frac{k}{2}} \bar \alpha_{\frac{k}{2}}, \bar{\alpha}_{- \frac{q}{2}} ]  \end{aligned}

.

If q=0,

[\bar{N}^\perp, \bar{\alpha}_{- \frac{q}{2}} ] = 0

.

If q>0,

\begin{aligned}  &[ \bar{N}^\perp, \bar{\alpha}_{- \frac{q}{2}} ] \\  &= \sum_{k \in \mathbb{Z}^+_\text{odd}}\left(   \bar \alpha_{- \frac{k}{2}} [  \bar \alpha_{\frac{k}{2}}, \bar{\alpha}_{- \frac{q}{2}} ]   + [ \bar \alpha_{- \frac{k}{2}}, \bar{\alpha}_{- \frac{q}{2}} ] \bar \alpha_{\frac{k}{2}} \right)  \\  &= \sum_{k \in \mathbb{Z}^+_\text{odd}}\left(   \bar \alpha_{- \frac{k}{2}} [  \bar \alpha_{\frac{k}{2}}, \bar{\alpha}_{- \frac{q}{2}} ] \right)  + 0  \\  &=    \bar \alpha_{- \frac{q}{2}} [  \bar \alpha_{\frac{q}{2}}, \bar{\alpha}_{- \frac{q}{2}} ]   \\  &=    \bar \alpha_{- \frac{q}{2}} \frac{q}{2}  \\  \end{aligned}

.

If q<0,

\begin{aligned}  &[ \bar{N}^\perp, \bar{\alpha}_{- \frac{q}{2}} ] \\  &= \sum_{k \in \mathbb{Z}^+_\text{odd}}\left(   \bar \alpha_{- \frac{k}{2}} [  \bar \alpha_{\frac{k}{2}}, \bar{\alpha}_{- \frac{q}{2}} ]   + [ \bar \alpha_{- \frac{k}{2}}, \bar{\alpha}_{- \frac{q}{2}} ] \bar \alpha_{\frac{k}{2}} \right)  \\  &= 0 + \sum_{k \in \mathbb{Z}^+_\text{odd}}  + [ \bar \alpha_{- \frac{k}{2}}, \bar{\alpha}_{- \frac{q}{2}} ] \bar \alpha_{\frac{k}{2}}   \\  &=    \frac{q}{2} \bar \alpha_{\frac{-q}{2}}  \\  \end{aligned}

.

\bar{N}^\perp should not be called a number operator. Instead, [ \bar{N}^\perp, \cdot ] should be.

It's through the commutation relation [ \bar{N}^\perp, \bar{\alpha}_{- \frac{q}{2}} ] = \frac{q}{2} \bar{\alpha}_{- \frac{q}{2}} that we see \bar{N}^\perp functioning as a number operator, not by \bar{N}^\perp acting directly on \bar{\alpha}_{- \frac{q}{2}} operators.

— Me@2025-02-04 11:56:57 AM

.

.

2025.02.04 Tuesday (c) All rights reserved by ACHK