Structure and Interpretation of Classical Mechanics
.
…
2. On the other hand, the path function and the path function
are not necessarily the same. Explain.
…
4. Write programs to illustrate the behavior.
~~~
(pp Gamma) (define ((f-bar q) t) (f ((Gamma q) t))) (define ((Gamma-bar h-bar) local) ((h-bar (osculating-path local)) (time local))) (define (q t) (sin t)) (define (f-bar q) (D q)) (define p (literal-function 'q)) (show-expression ((f-bar p) 't))
(show-expression ((osculating-path ((Gamma p) 't_0)) 't))
(show-expression ((Gamma-bar f-bar) ((Gamma p) 't)))
(define ((GammaBar-fBar-o-Gamma f-bar) q) (compose (Gamma-bar f-bar) (Gamma q))) (show-expression (((GammaBar-fBar-o-Gamma f-bar) p) 't))
Two paths that have the same local description up to the
-th derivative are said to osculate with order-
contact. For example, a path and the truncated power series representation of the path up to order
have order-
contact; if fewer than
derivatives are needed by a local-tuple function, the path and the truncated power series representation are equivalent.
(define (g-bar q) ((expt D 3) q)) (show-expression ((Gamma p) 't))
(show-expression ((g-bar p) 't))
(show-expression ((osculating-path ((Gamma p) 't_0)) 't))
(show-expression (((GammaBar-fBar-o-Gamma g-bar) p) 't))
— Me@2024-10-16 10:34:35 AM
.
.
2025.02.16 Sunday (c) All rights reserved by ACHK