13.1 Commutation relations for oscillators

A First Course in String Theory

.

(a) Use the lower-sign version of equation (13.28) and the appropriate mode expansion to verify explicitly that the unbarred commutation relations of (13.29) emerge.

~~~

Eq. (13.28):

[(\dot X^I - X^{I'}) (\tau, \sigma), (\dot X^J - X^{J'})(\tau, \sigma')] = - 4 \pi \alpha' i \eta^{IJ} \frac{d}{d \sigma} \delta(\sigma - \sigma')

Eq. (13.29):

\left[ \alpha_m^I, \alpha_n^J \right] = m \delta_{m+n, 0} \eta^{IJ}

Eq. (13.24):

\displaystyle{X^\mu (\tau, \sigma) = x_0^\mu + \sqrt{2 \alpha'} \alpha_0^\mu \tau + i \sqrt{\frac{\alpha'}{2}} \sum_{n \neq 0} \frac{e^{-i n \tau}}{n} (\alpha_n^\mu e^{i n \sigma} + \bar \alpha_n^\mu e^{-in \sigma})}

.

\displaystyle{\dot{X}^\mu(\tau, \sigma) = \sqrt{2 \alpha'} \alpha_0^\mu + \sqrt{\frac{\alpha'}{2}} \sum_{n \neq 0} e^{-i n \tau} \left( \alpha_n^\mu e^{i n \sigma} + \bar{\alpha}_n^\mu e^{-i n \sigma} \right)}

\displaystyle{X^{\mu'}(\tau, \sigma) = \sqrt{\frac{\alpha'}{2}} \sum_{n \neq 0} e^{-i n \tau} \left( \bar{\alpha}_n^\mu e^{-i n \sigma} - \alpha_n^\mu e^{i n \sigma} \right)}

.

\displaystyle{\begin{aligned}    &\int_0^{2 \pi} f(\sigma) d \sigma\frac{d}{d \sigma} \delta(\sigma - \sigma') \\    &= \int_0^{2 \pi} f(\sigma) d \delta(\sigma - \sigma') \\    &= f(2 \pi) \delta(2 \pi - \sigma') - f(0) \delta(0 - \sigma') - \int_0^{2 \pi} \delta(\sigma - \sigma') \frac{df(\sigma)}{d \sigma} d \sigma  \\  \end{aligned}}

.

Eq. (13.26):

\displaystyle{\begin{aligned}    \left[(\dot X^I - X^{I'}) (\tau, \sigma), (\dot X^J - X^{J'})(\tau, \sigma')\right] &= - 4 \pi \alpha' i \eta^{IJ} \frac{d}{d \sigma} \delta(\sigma - \sigma') \\    \left[ \sqrt{2 \alpha'} \sum_{m \in \mathbb{Z}} \alpha_m^I e^{-i m (\tau - \sigma)}, \sqrt{2 \alpha'} \sum_{n \in \mathbb{Z}} \alpha_n^J e^{-i n (\tau - \sigma')} \right] &= - 4 \pi \alpha' i \eta^{IJ} \frac{d}{d \sigma} \delta(\sigma - \sigma') \\    \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} e^{-i m (\tau - \sigma)} e^{-i n (\tau - \sigma')} \left[ \alpha_m^I , \alpha_n^J \right] &= - 2 \pi i \eta^{IJ} \frac{d}{d \sigma} \delta(\sigma - \sigma') \\      \end{aligned}}

.

\displaystyle{\begin{aligned}    \frac{1}{2 \pi} \int_0^{2 \pi} d \sigma e^{iq\sigma} \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} e^{-i (m+n) \tau} e^{i m \sigma} e^{i n \sigma'} \left[ \alpha_m^I , \alpha_n^J \right] &= - 2 \pi i \eta^{IJ}   \frac{1}{2 \pi} \int_0^{2 \pi} d \sigma e^{iq\sigma} \frac{d}{d \sigma} \delta(\sigma - \sigma') \\     \end{aligned}}

\displaystyle{\begin{aligned}    \sum_{n \in \mathbb{Z}} e^{-i (-q+n) \tau} e^{i n \sigma'} \left[ \alpha_{-q}^I , \alpha_n^J \right] &= - i \eta^{IJ}    \left[ \delta(2 \pi - \sigma') - \delta(0 - \sigma') - iq \int_0^{2 \pi} \delta (\sigma - \sigma') e^{i q \sigma} d\sigma \right] \\     \sum_{n \in \mathbb{Z}} e^{-i (-q+n) \tau} e^{i n \sigma'} \left[ \alpha_{-q}^I , \alpha_n^J \right]&= - i \eta^{IJ}    \left[ \delta(2 \pi - \sigma') - \delta(0 - \sigma') - iq e^{i q \sigma'} \right] \\       \end{aligned}}

.

\displaystyle{\begin{aligned}  \frac{1}{2 \pi} \int_0^{2 \pi} d \sigma' e^{ip\sigma'} \sum_{n \in \mathbb{Z}} e^{-i (-q+n) \tau} e^{i n \sigma'} \left[ \alpha_{-q}^I , \alpha_n^J \right]&= - i \eta^{IJ}      \frac{1}{2 \pi} \int_0^{2 \pi} d \sigma' e^{ip\sigma'} \left[ \delta(2 \pi - \sigma') - \delta(0 - \sigma') - iq e^{i q \sigma'} \right] \\     \end{aligned}}

\displaystyle{\begin{aligned}    e^{i (p+q) \tau} \left[ \alpha_{-q}^I , \alpha_{-p}^J \right]&= - \eta^{IJ}      \frac{1}{2 \pi} q \int_0^{2 \pi} d \sigma' e^{ip\sigma'} e^{i q \sigma'} \\      e^{i (p+q) \tau} \left[ \alpha_{-q}^I , \alpha_{-p}^J \right]&= - \eta^{IJ}     q \delta_{p+q,0}  \\ \\ \\     e^{i (m+n) \tau} \left[ \alpha_{-n}^I , \alpha_{-m}^J \right]&= -    n \delta_{m+n,0} \eta^{IJ}  \\      \end{aligned}}

— Me@2025-04-17 12:26:46 PM

.

.

2025.04.18 Friday (c) All rights reserved by ACHK