Ex 1.33 Properties of E

Understanding the Euler-Lagrange Operator

.

Let \displaystyle{F} and \displaystyle{G} be two Lagrangian-like functions of a local tuple, \displaystyle{C} be a local-tuple transformation function, and \displaystyle{c} a constant.

Demonstrate the following properties:

a. \displaystyle{E[F + G] = E[F] + E[G]}

d. \displaystyle{\mathcal{E}[F \circ C] = D_t (DF \circ C) \partial_2 C + DF \circ C \mathcal{E}[C]}

~~~

Eq. (1.167):

\displaystyle{\bar \Gamma (\bar f) (t, q, v, \dots) = \bar f [\mathcal{O} (t,q,v, \dots)](t)}

Eq. (1.174):

\displaystyle{E[L] = D_t \partial_2 L - \partial_1 L}

.

\displaystyle{  \begin{aligned}  E[L] &= D_t \partial_2 L - \partial_1 L \\   E[F+G] &= D_t \left( \partial_2 (F+G) \right) - \partial_1 (F+G) \\   &= D_t \left( \partial_2 F+\partial_2 G \right) - (\partial_1 F+ \partial_1 G) \\   &= D_t \partial_2 F+D_t \partial_2 G - (\partial_1 F+ \partial_1 G) \\  &= D_t \partial_2 F- \partial_1 F +D_t \partial_2 G - \partial_1 G \\   &= E[F] + E[G] \\  \end{aligned}  }

— Me@2025-05-30 03:40:41 PM

.

The Problem

\displaystyle{  \begin{aligned}  &E[F \circ C] (t,q,v,\dots) \\   &= (D_t \partial_2 (F \circ C) - \partial_1 (F \circ C)) (t,q,v,\dots)\\     &= (D_t \partial_2 (F (C(t,q,v,\dots))) - \partial_1 (F(C(t,q,v,\dots)))) \\     \end{aligned}  }

Prove that

\displaystyle{\mathcal{E}[F \circ C] = D_t (DF \circ C) \partial_2 C + DF \circ C \mathcal{E}[C]}


Key Terms Explained

  • Local Tuple: Think of this as a snapshot of a system’s state along a path. It includes:
    • \displaystyle{ t }: time,
    • \displaystyle{ q }: generalized coordinate (e.g., position),
    • \displaystyle{ v = \frac{dq}{dt} }: velocity,
    • and possibly higher derivatives like acceleration. We’ll use \displaystyle{ \eta = (t, q, v) } for simplicity.
  • Lagrangian-like Function \displaystyle{ F }: A scalar function of the local tuple, such as \displaystyle{ F(t, q, v) }, akin to a Lagrangian in mechanics.
  • Local-Tuple Transformation \displaystyle{ C }: A function that maps one local tuple to another. For example, \displaystyle{ C(\eta) = (t, C_q(t, q, v), C_v(t, q, v)) }, where \displaystyle{ C_q } and \displaystyle{ C_v } transform the coordinate and velocity.
  • Composition \displaystyle{ F \circ C }: This is \displaystyle{ F } evaluated at the transformed tuple: \displaystyle{ (F \circ C)(\eta) = F(t, C_q(t, q, v), C_v(t, q, v)) }.
  • Euler-Lagrange Operator \displaystyle{ E }: For a function \displaystyle{ G(t, q, v) }, it’s defined as:
    \displaystyle{ E[G] = \frac{\partial G}{\partial q} - D_t \left( \frac{\partial G}{\partial v} \right) }
    This operator extracts the equations of motion when applied to a Lagrangian.
  • Total Time Derivative \displaystyle{ D_t }: This accounts for how a function changes over time, considering all variables. For \displaystyle{ h(t, q, v) }:
    \displaystyle{ D_t h = \frac{\partial h}{\partial t} + v \frac{\partial h}{\partial q} + a \frac{\partial h}{\partial v} }
    where \displaystyle{ a = \frac{dv}{dt} } is acceleration.
  • Derivative \displaystyle{ DF }: The derivative of \displaystyle{ F } with respect to its spatial arguments, typically \displaystyle{ DF = \left( \frac{\partial F}{\partial q}, \frac{\partial F}{\partial v} \right) }.

— Me@2025-05-31 01:32:05 PM

.

.

2025.06.03 Tuesday (c) All rights reserved by ACHK