Paradox 9

In the context of quantum mechanics, superdeterminism is a term that has been used to describe a hypothetical class of theories which evade Bell’s theorem by virtue of being completely deterministic. Bell’s theorem depends on the assumption of [non-] counterfactual definiteness, which technically does not apply to deterministic theories. It is conceivable, but arguably unlikely, that someone could exploit this loophole to construct a local hidden variable theory that reproduces the predictions of quantum mechanics.

… in a deterministic theory, the measurements the experimenters choose at each detector are predetermined by the laws of physics. It can therefore be argued that it is erroneous to speak of what would have happened had different measurements been chosen; no other measurement choices were physically possible. Since the chosen measurements can be determined in advance, the results at one detector can be affected by the type of measurement done at the other without any need for information to travel faster than the speed of light.

— Wikipedia on Superdeterminism

Even if there are no other physical possibilities for a measurement choice, there are other logical possibilities. The goal of quantum mechanics, or science in general, is to consider, for an identical system, what input results what output.

The problem of superdeterminism in quantum mechanics is not “claiming the observers’ action are deterministic”, but by claiming so, claiming also that there is no decoherence (wave function collapse).

When we say that the observer cannot be separated from the observed, we mean that we have to consider the whole (observed + observer), instead of shifting the system from the observed to the observer, and then ignoring the original observed itself.

— Me@2012-11-20 02:11:06 PM

2012.11.23 Friday (c) All rights reserved by ACHK