Quantum observer 1.2

Single-world interpretation, 7.4

What if I have a microscopic measuring device, B, as a “quantum observer”?

If a particle A is in a superposition of eigenstates, another particle B, as a micro-observer, can also be in a superposition of eigenstates, before or after the observation.

An observation on A by B is an interaction between A and B.

If after the observation/interaction, B is in a superposition, what would B see? Would it see A as in a superposition? Or would it see A as in one of the eigenstates?

It depends on whether you regard individual eigenstates of the resulting B as individual particles “B1, B2, …” in multiple “worlds”, or you regard the superposition of all eigenstates of the resulting B as one single particle in this single universe. In other words, it depends on how you use the label “B”.

The identification of particle B as the superposition of all its eigenstates is more reasonable, because that is compatible with the meaning of the word “observer” in ordinary quantum mechanics. In ordinary quantum mechanics, an observer is a measuring device. A measuring device is a macroscopic object, following classical physical laws. If we have to express the classical laws in terms of quantum mechanics, we say that each classical state of that macroscopic object is a superposition of a lot of quantum states of a lot of the constituent particles.

Classical objects follow the Principle of Least Action, which is due to the superposition of a lot of microstates of the particles. If there is no quantum superposition, there is no Principle of Least Action. Classical mechanics does not work.

— Me@2013.01.14

2013.01.17 Thursday (c) All rights reserved by ACHK