Relational quantum mechanics

EPR paradox, 10

.

Relational quantum mechanics (RQM) is an interpretation of quantum mechanics which treats the state of a quantum system as being observer-dependent, that is, the state is the relation between the observer and the system. This interpretation was first delineated by Carlo Rovelli in a 1994 preprint, and has since been expanded upon by a number of theorists. It is inspired by the key idea behind special relativity, that the details of an observation depend on the reference frame of the observer, and uses some ideas from Wheeler on quantum information.

,,,

Relational solution

In RQM, an interaction between a system and an observer is necessary for the system to have clearly defined properties relative to that observer. Since the two measurement events take place at spacelike separation, they do not lie in the intersection of Alice’s and Bob’s light cones. Indeed, there is no observer who can instantaneously measure both electrons’ spin.

The key to the RQM analysis is to remember that the results obtained on each “wing” of the experiment only become determinate for a given observer once that observer has interacted with the other observer involved. As far as Alice is concerned, the specific results obtained on Bob’s wing of the experiment are indeterminate for her, although she will know that Bob has a definite result. In order to find out what result Bob has, she has to interact with him at some time {\displaystyle t_{3}} in their future light cones, through ordinary classical information channels.

The question then becomes one of whether the expected correlations in results will appear: will the two particles behave in accordance with the laws of quantum mechanics? Let us denote by {\displaystyle M_{A}(\alpha )} the idea that the observer {\displaystyle A} (Alice) measures the state of the system {\displaystyle \alpha} (Alice’s particle).

So, at time {\displaystyle t_{2}}, Alice knows the value of {\displaystyle M_{A}(\alpha )}: the spin of her particle, relative to herself. But, since the particles are in a singlet state, she knows that

{\displaystyle M_{A}(\alpha )+M_{A}(\beta )=0,}

and so if she measures her particle’s spin to be {\displaystyle \sigma }, she can predict that Bob’s particle ( {\displaystyle \beta } ) will have spin {\displaystyle -\sigma }. All this follows from standard quantum mechanics, and there is no “spooky action at a distance” yet. From the “coherence-operator” discussed above, Alice also knows that if at {\displaystyle t_{3}} she measures Bob’s particle and then measures Bob (that is asks him what result he got) — or vice versa — the results will be consistent:

{\displaystyle M_{A}(B)=M_{A}(\beta )}

Finally, if a third observer (Charles, say) comes along and measures Alice, Bob, and their respective particles, he will find that everyone still agrees, because his own “coherence-operator” demands that

{\displaystyle M_{C}(A)=M_{C}(\alpha )} and {\displaystyle M_{C}(B)=M_{C}(\beta )}

while knowledge that the particles were in a singlet state tells him that

{\displaystyle M_{C}(\alpha )+M_{C}(\beta )=0.}

Thus the relational interpretation, by shedding the notion of an “absolute state” of the system, allows for an analysis of the EPR paradox which neither violates traditional locality constraints, nor implies superluminal information transfer, since we can assume that all observers are moving at comfortable sub-light velocities. And, most importantly, the results of every observer are in full accordance with those expected by conventional quantum mechanics.

— Wikipedia on Relational quantum mechanics

.

.

2018.10.22 Monday ACHK

Block spacetime, 9

motohagiography 42 days ago [-]

I once saw a fridge magnet that said “time is natures way of making sure everything doesn’t happen all at once,” and it’s stuck with me.

The concept of time not being “real,” can be useful as an exercise for modelling problems where to fully explore the problem space, you need to decouple your solutions from needing them to occur in an order or sequence.

From an engineering perspective, “removing” time means you can model problems abstractly by stepping back from a problem and asking, what are all possible states of the mechanism, then which ones are we implementing, and finally, in what order. This is different from the relatively stochastic approach most people take of “given X, what is the necessary next step to get to desired endstate.”

More simply, as a tool, time helps us apprehend the states of a system by reducing the scope of our perception of them to sets of serial, ordered phenomena.

Whether it is “real,” or an artifact of our perception is sort of immaterial when you can choose to reason about things with it, or without it. A friend once joked that math is what you get when you remove time from physics.

I look forward to the author’s new book.

— Gödel and the unreality of time

— Hacker News

.

.

2018.06.26 Tuesday ACHK

Eigenstates 2.3.2

.

eigenstates

~ classical states

~ definite states

— Me@2012-04-15 11:42:10 PM

.

The concept of eigenstate is relative.

.

First, you have to specify the eigenstate is of which physical observable.

A physical system can be at an eigenstate of one observable but at a superposition state of another observable.

.

Second, you have to specify the state of that observable is eigen with respect to which observer.

— Me@2018-06-16 7:27 AM

.

eigenstates

~ of which observable?

~ with respect to which observer?

— Me@2018-06-19 10:54:54 AM

.

.

2018.06.19 Tuesday (c) All rights reserved by ACHK

The Sixth Sense, 3

Mirror selves, 2 | Anatta 3.2 | 無我 3.2

.

You cannot feel your own existence or non-existence. You can feel the existence or non-existence of (such as) your hair, your hands, etc.

But you cannot feel the existence or non-existence of _you_.

— Me@2018-03-17 5:12 PM

.

Only OTHER people or beings can feel your existence or non-existence.

— Me@2018-04-30 11:29:08 AM

.

.

2018.04.30 Monday (c) All rights reserved by ACHK

Logical arrow of time, 6.3

“Time’s arrow” is only meaningful when considering with respect to an observer.

.

c.f. the second law of thermodynamics

The direction of time is direction of losing microscopic information… by whom?

.

“Time’s arrow” is only meaningful when considering with respect to an observer.

— Me@2018-01-01 6:14 PM

.

.

2018.04.09 Monday (c) All rights reserved by ACHK

Logical arrow of time, 6.2

Source of time asymmetry in macroscopic physical systems

Second law of thermodynamics

.

.

Physics is not about reality, but about what one can say about reality.

— Bohr

— paraphrased

.

.

Physics should deduce what an observer would observe,

not what it really is, for that would be impossible.

— Me@2018-02-02 12:15:38 AM

.

.

1. Physics is about what an observer can observe about reality.

2. Whatever an observer can observe is a consistent history.

observer ~ a consistent story

observing ~ gathering a consistent story from the quantum reality

3. Physics [relativity and quantum mechanics] is also about the consistency of results of any two observers _when_, but not before, they compare those results, observational or experimental.

4. That consistency is guaranteed because the comparison of results itself can be regarded as a physical event, which can be observed by a third observer, aka a meta observer.

Since whenever an observer can observe is consistent, the meta-observer would see that the two observers have consistent observational results.

5. Either original observers is one of the possible meta-observers, since it certainly would be witnessing the comparison process of the observation data.

— Me@2018-02-02 10:25:05 PM

.

.

.

2018.02.03 Saturday (c) All rights reserved by ACHK

Black hole complementarity 3

Raphael nicely avoids many of the confusions by introducing a refined version of the complementarity principle, the so-called observer complementarity… If I add some “foundations of quantum mechanics” flavor to the principle, it says:

Quantum mechanics is a set of rules that allows an observer to predict, explain, and/or verify observations (and especially their mutual relationships) that he has access to.

An observer has access to a causal diamond – the intersection of the future light cone of the initial moment of his world line and the past light cone of the final moment of his world line (the latter, the final moment before which one must be able to collect the data, is more important in this discussion).

No observer can detect inconsistencies within the causal diamonds. However, inconsistencies between “stories” as told by different observers with different causal diamonds are allowed (and mildly encouraged) in general (as long as there is no observer who could incorporate all the data needed to see an inconsistency).

Bohr has said that physics is about the right things we can say about the real world, not about objective reality, and it has to be internally consistent. However, in the context of general relativity, the internal consistency doesn’t imply that there has to be a “global viewpoint” or “objective reality” that is valid for everyone.

— Raphael Bousso is right about firewalls

— Lubos Motl

2016.07.27 Wednesday ACHK

Logical arrow of time, 6

The source of the macroscopic time asymmetry, aka the second law of thermodynamics, is the difference of prediction and retrodiction.

In a prediction, the deduction direction is the same as the physical/observer time direction.

In a retrodiction, the deduction direction is opposite to the physical/observer time direction.

.

— guess —

If a retrodiction is done by a time-opposite observer, he will see the entropy increasing. For him, he is really doing a prediction.

However, it may not be possible for such an observer to exist. Me@2018-02-02 09:37:48 PM

— guess —

.

— Me@2013-10-25 3:33 AM

.

.

.

2013.10.29 Tuesday (c) All rights reserved by ACHK

Conscious time

Cumulative concept of time, 15

In 1895, in his novel, The Time Machine, H.G. Wells wrote, “There is no difference between time and any of the three dimensions of space except that our consciousness moves along it.”

— Wikipedia on Spacetime

Consciousness “moves” from the past to the future because consciousness is a kind of reflection.

To be conscious, one has to access its own states. But only the past states are available. Accessing one’s own now-here state is logically impossible, because that creates a metadox (paradox).

— Me@2013-06-26 02:28:51 PM

We can remember the past but not the future because the past is part of the future; the whole contains its parts, but not vice versa.

— Me@2011.08.21

2013.06.29 Saturday (c) All rights reserved by ACHK

Causal diamonds

Quantum mechanics is a set of rules that allows an observer to predict, explain, and/or verify observations (and especially their mutual relationships) that he has access to.

An observer has access to a causal diamond – the intersection of the future light cone of the initial moment of his world line and the past light cone of the final moment of his world line (the latter, the final moment before which one must be able to collect the data, is more important in this discussion).

No observer can detect inconsistencies within the causal diamonds. However, inconsistencies between “stories” as told by different observers with different causal diamonds are allowed (and mildly encouraged) in general (as long as there is no observer who could incorporate all the data needed to see an inconsistency).

— Raphael Bousso is right about firewalls

— Lubos Motl

2013.04.08 Monday ACHK

Quantum observer 1.2

Single-world interpretation, 7.4

What if I have a microscopic measuring device, B, as a “quantum observer”?

If a particle A is in a superposition of eigenstates, another particle B, as a micro-observer, can also be in a superposition of eigenstates, before or after the observation.

An observation on A by B is an interaction between A and B.

If after the observation/interaction, B is in a superposition, what would B see? Would it see A as in a superposition? Or would it see A as in one of the eigenstates?

It depends on whether you regard individual eigenstates of the resulting B as individual particles “B1, B2, …” in multiple “worlds”, or you regard the superposition of all eigenstates of the resulting B as one single particle in this single universe. In other words, it depends on how you use the label “B”.

The identification of particle B as the superposition of all its eigenstates is more reasonable, because that is compatible with the meaning of the word “observer” in ordinary quantum mechanics. In ordinary quantum mechanics, an observer is a measuring device. A measuring device is a macroscopic object, following classical physical laws. If we have to express the classical laws in terms of quantum mechanics, we say that each classical state of that macroscopic object is a superposition of a lot of quantum states of a lot of the constituent particles.

Classical objects follow the Principle of Least Action, which is due to the superposition of a lot of microstates of the particles. If there is no quantum superposition, there is no Principle of Least Action. Classical mechanics does not work.

— Me@2013.01.14

2013.01.17 Thursday (c) All rights reserved by ACHK

Quantum observer 1.1

In ordinary quantum mechanics, observers or measuring devices are macroscopic. So they are classical, in the sense that each of them is always in a macroscopic-eigenstate, aka “a macrostate“. A classical object would not be in a macroscopic superposition, in the sense that there would not be in a superposition of macroscopic-eigenstates. Macroscopic reality is always definite, unless you are talking about future events.

Then, would the macroscopic reality actually be a superposition of microscopic eigenstates?

Yes, it is. That is a logical implication from quantum mechanics. However, that makes no experimental difference, since those microstates of a lot of particles constitute a single macrostate.

In conclusion, a macrostate is not a superposition of macroscopic eigenstates. And although it is a superposition of microscopic eigenstates, it makes only conceptual difference but no experimental difference even if we ignore this fact. So for a classical observer, we do not have to consider whether it is in a superposition or not.

How about the observed particle? Would it be in a superposition?

It can and probably is.

However, superposition is a logical implication only. It cannot be observed directly using a macroscopic measuring device. Also, by using a macroscopic measuring device, aka “a classical observer“, to measure or observe a microscopic event, we will always collapse the wave function of the observed system (due to the decoherence effect), yielding a definite macroscopic result (which is corresponding to one of the eigenstate components in the original microscopic superposition). 

What if I have a microscopic measuring device as a “quantum observer”?

— Me@2013-01-16 10:53:06 AM

2013.01.16 Wednesday (c) All rights reserved by ACHK

Phe-nomenon

Universal wave function, 19 | Reductionism 4

Impartial/All is the Noumenon, which is logically impossible for any single observer to observe directly, unless the observer is the whole of the universe. But “self-observation” is meaningless.

— Me@2012.04.07

Because “state” is expressed in RQM as the correlation between two systems, there can be no meaning to “self-measurement”.

— Wikipedia on Relational quantum mechanics

The Noumenon is a logical implication. It cannot be observed directly. It can be observed partially only, through senses, or phenomena. An observation is an interaction between the observer and the observed.

To really “observe” the Noumenon, all we can do is to observe as many phenomena as possible. In other words, we consider as many observer-observed pairs as possible.

— Me@2013.01.14

This is because this state would have to be ascribed to a correlation between the universe and some other physical observer, but this observer in turn would have to form part of the universe, and as was discussed above, it is impossible for an object to give a complete specification of itself. Following the idea of relational networks above, an RQM-oriented cosmology would have to account for the universe as a set of partial systems providing descriptions of one another. The exact nature of such a construction remains an open question.

— Wikipedia on Relational quantum mechanics

nomenon = all

phe- = part

noumenon = all aspects of the universe

phenomenon = part of the reality of the universe

— Me@2012.04.07

2013.01.14 Monday (c) All rights reserved by ACHK

State

On the assumption that all interactions are local (which is backed up by the analysis of the EPR paradox presented below), one could say that the ideas of “state” and spatiotemporal contiguity are two sides of the same coin: spacetime location determines the possibility of interaction, but interactions determine spatiotemporal structure. The full extent of this relationship, however, has not yet fully been explored.

— Wikipedia on Relational quantum mechanics

2012.11.11 Sunday ACHK

Black hole complementarity 2

Instead, an observer can only detect the information at the horizon itself, or inside, but never both simultaneously. Complementarity is a feature of the quantum mechanics of noncommuting observables, and Susskind proposed that both stories are complementary in the quantum sense.

Interestingly enough, an infalling observer will see the point of entry of the information as being localized on the event horizon, while an external observer will notice the information being spread out uniformly over the entire stretched horizon before being re-radiated. To an infalling observer, information and entropy passes through the horizon with nothing strange happening. To an external observer, the information and entropy is absorbed into the stretched horizon which acts like a dissipative fluid with entropy, viscosity and electrical conductivity.

— Wikipedia on Black hole complementarity

2012.10.30 Tuesday ACHK