Quantum Methods with Mathematica
.
Reproduce Figure 2.1-1 …
~~~
phi[n_, x_] := Sin[n Pi x] p[n_] := Plot[phi[n,x],{x,0,1}] GraphicsColumn[{p[1], p[2], p[3]}]
— Me@2023-03-03 01:30:46 PM
.
.
2023.03.05 Sunday (c) All rights reserved by ACHK
Quantum Methods with Mathematica
.
Reproduce Figure 2.1-1 …
~~~
phi[n_, x_] := Sin[n Pi x] p[n_] := Plot[phi[n,x],{x,0,1}] GraphicsColumn[{p[1], p[2], p[3]}]
— Me@2023-03-03 01:30:46 PM
.
.
2023.03.05 Sunday (c) All rights reserved by ACHK
Remove["Global`*"] hbar := \[HBar] H[V_] @ psi_ := -hbar^2/(2m) D[psi,{x,2}] + V psi SchD[V_] @ psi_ := H[V] @ psi - En psi SchD[V[x]] @ psi[x] == 0 // TeXForm
phi[n_, x_] := Cn Sin[n Pi x/L] SchD[0] @ phi[n,x] == 0 // ExpandAll SchD[0] @ phi[n,x] / phi[n,x] == 0 // Simplify // TeXForm
Starting with a linear superposition A E^(Ikx) + B E^(-Ikx) of independent plane waves, where A and B are constants, verify the box eigen-functions and eigen-energies given above.
Thus, show that this superposition is a solution of the Schrodinger equation and, by invoking the boundary condition, that k -> n Pi/L.
— Quantum Methods with Mathematica
phi[k_, x_] := A E^(I k x) + B E^(- I k x) eq1 := SchD[0] @ phi[k,x]/phi[k,x] == 0 // Simplify Ek[k_] := En /. Solve[eq1, En] [[1]] Ek[k] // TeXForm
.
The boundary conditions are .
So
Solve[E^(I k L) - E^(-I k L) == 0, k] // Simplify
.
phi[n_, x_] := Cn Sin[n Pi x/L] norm[n_] = Cn /. Solve[ Integrate[ phi[n,x]^2, {x,0,L}] == 1 /. Sin[m_Integer n Pi] -> 0, Cn ] [[1]] // TeXForm
It’s interesting to note in passing that the 1D box eigenfunctions are also classically the eigenfunctions of a taut string. However, whereas the quantum mechanical energies scale as n^2, the classical eigenfrequencies of the string’s normal modes are linear in n. This is a consequence of the classical wave equation being second order in time in contrast to the quantum wave equation being first order.
— Quantum Methods with Mathematica
— Me@2022-12-16 10:23:45 AM
.
.
2022.12.17 Saturday (c) All rights reserved by ACHK
Quantum Methods with Mathematica
.
Assume a wavefunction of the form psi[x, t] == f[t] psi[x] and perform a separation of variables on the wave equation.
Show that f[t] = E^(-I w t) where h w is the separation constant. Try the built-in function DSolve.
Equate h w to the Energy by evaluating the [expected] value of hamiltonian[V] in the state psi[x, t].
~~~
Remove["Global`*"] hbar := \[HBar] H[V_] @ psi_ := -hbar^2/(2m) D[psi,{x,2}] + V psi psi[x_,t_] := f[t] psi[x] I hbar D [psi[x,t],t] == H[V] @ psi[x, t] I hbar D [psi[x,t],t] / psi[x,t] == H[V] @ psi[x,t] / psi[x,t]
E1 := I hbar D [psi[x,t],t] / psi[x,t] == H[V] @ psi[x,t] / psi[x,t] Simplify[E1]
E2 := - 1/2 hbar hbar (D[D[psi[x],x],x]/(m psi[x])) == hbar omega DSolve[E2, psi[x], x] E3 := 1/2 hbar 2 i D[f[t],t] / f[t] == hbar omega DSolve[E3, f[t], t]
k psi[x_] := c E^(I k x) psi[x] f[t_] := E^(-I omega t) f[t] psi[x_,t_] := f[t] psi[x] psi[x,t]
E4 := Conjugate[psi[x,t]] H[0] @ psi[x,t] E4 E5 := Simplify[E4] E5 k := Sqrt[2 m omega / hbar] Refine[E5, {Element[{c, omega, m, t, hbar, k, x}, Reals]}]
E6 := Conjugate[psi[x,t]] psi[x,t] Simplify[E6]
.
.
— Me@2022-11-26 07:17:29 PM
.
.
2022.11.28 Monday (c) All rights reserved by ACHK
Directory[] mString := Import["n.txt"] nString := StringDelete[mString, "\n" | "\r"] nList := Map[FromDigits, Characters[nString]] take13[lst_] := Times @@ Take[lst,13] Fmax13n[lst_, n_] := If[Length[lst] < 13, n, With[{t13 = take13[lst]}, If[n > t13, Fmax13n[Rest[lst], n], Fmax13n[Rest[lst], t13]]]] Fmax13n[nList, 0] Wmax13n[lst_, n_] := Which[ Length[lst] < 13, n, t13 = take13[lst]; n > t13, Wmax13n[Rest[lst], n], True, Wmax13n[Rest[lst], t13]] Wmax13n[nList, 0] Fmax13n[nList, 0] - Wmax13n[nList, 0]
— colorized by palette fm
— Me@2022-11-24 05:51:56 PM
.
.
2022.11.24 Thursday (c) All rights reserved by ACHK
A First Course in String Theory
.
The generating function is an infinite product:
.
To evaluate the infinite product, you can use Mathematica
(or its official free version Wolfram Engine
) with the following commands:
TeXForm[ HoldForm[ (1/x)*Product[ (1+x^(r-1/2))^32/(1-x^r)^8, {r, 1, Infinity}]]] f[x_] := (1/x)*Product[ (1+x^(r-1/2))^32/(1-x^r)^8, {r, 1, Infinity}] Print[f[x]] TeXForm[f[x]] TeXForm[Series[f[x], {x,0,3}]]1 32 QPochhammer[-(-------), x] Sqrt[x] ------------------------------------ 1 32 8 (1 + -------) x QPochhammer[x, x] Sqrt[x]
![]()
![]()
— Me@2022-11-23 04:40:28 PM
.
.
2022.11.23 Wednesday (c) All rights reserved by ACHK
You must be logged in to post a comment.