Ex 1.21 The dumbbell, 3.4

Structure and Interpretation of Classical Mechanics

.

e. Make a Lagrangian (\displaystyle{= T - V}) for the system described with the irredundant generalized coordinates \displaystyle{x_{cm}}, \displaystyle{y_{cm}}, \displaystyle{\theta} and compute the Lagrange equations from this Lagrangian. They should be the same equations as you derived for the same coordinates in part d.

~~~

Eq. 1.95:

\displaystyle{ L'(t;q,c,F; \dot q, \dot c, \dot F)}

\displaystyle{ = \sum_\alpha \frac{1}{2} m_\alpha \left( \partial_0 f_\alpha (t, q, c)   + \partial_1 f_\alpha (t, q,c) \dot q + \partial_2 f_\alpha (t, q, c) \dot c \right)^2   }

\displaystyle{   - V(t, f(t,q,c)) - \sum_{\{ \alpha, \beta | \alpha < \beta, \alpha \leftrightarrow \beta \}}   \frac{F_{\alpha \beta}}{2 l_{\alpha \beta}}   \left[   c_{\alpha \beta}^2 - l_{\alpha \beta}^2  \right]  }

.

Eq. 1.97:

\displaystyle{ L''(t,q,\dot q)}

\displaystyle{ = \sum_\alpha \frac{1}{2} m_\alpha \left( \partial_0 f_\alpha (t, q)   + \partial_1 f_\alpha (t, q) \dot q \right)^2 - V(t, f(t,q,l))  }

.

71

Consider a function \displaystyle{g} of, say, three arguments, and let \displaystyle{g_0} be a function of two arguments satisfying \displaystyle{g_0(x, y) = g(x, y, 0)}.

Then \displaystyle{(\partial_0 g_0)(x, y) = (\partial_0 g)(x, y, 0)}.

The substitution of a value in an argument commutes with the taking of the partial derivative with respect to a different argument. In deriving the Lagrange equations for \displaystyle{q} we can set \displaystyle{c = l} and \displaystyle{  \dot c = 0} in the Lagrangian, but we cannot do this in deriving the Lagrange equations associated with \displaystyle{c}, because we have to take derivatives with respect to those arguments.

.

[guess]

\displaystyle{ M = m_1 + m_2 }

\displaystyle{ \frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2} }

\displaystyle{ V = 0 }

.

\displaystyle{ T }

\displaystyle{ = \frac{1}{2} M v^2 + \frac{1}{2} I \omega^2 }

\displaystyle{ = \frac{1}{2} (m_0 + m_1) (\dot x_{CM}^2 + \dot y_{CM}^2 ) + \frac{1}{2} \left( m_1 r_1^2 + m_2 r_2^2 \right) \dot \theta^2 }

\displaystyle{ = \frac{1}{2} (m_0 + m_1) (\dot x_{CM}^2 + \dot y_{CM}^2 ) + \frac{1}{2} \left[ m_1 \left( \frac{m_2 l}{m_1 + m_2} \right)^2 + m_2 \left( \frac{m_1 l}{m_1 + m_2} \right)^2 \right] \dot \theta^2 }

\displaystyle{ = \frac{1}{2} (m_0 + m_1) (\dot x_{CM}^2 + \dot y_{CM}^2 ) + \frac{1}{2} m_1 m_2 \left( \frac{1}{m_1 + m_2} \right)^2   ( m_2 + m_1 ) l^2 \dot \theta^2 }

\displaystyle{ = \frac{1}{2} (m_0 + m_1) (\dot x_{CM}^2 + \dot y_{CM}^2 ) + \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} l^2 \dot \theta^2 }

\displaystyle{ = \frac{1}{2} (m_0 + m_1) (\dot x_{CM}^2 + \dot y_{CM}^2 ) + \frac{1}{2} \mu l^2 \dot \theta^2 }

[guess]

— Me@2021-11-24 09:58:31 PM

.

.

2021.11.26 Friday (c) All rights reserved by ACHK

Impossible to break

The difference between a machine possible to break and a machine impossible to break is that when a machine impossible to break breaks, it is impossible to fix.

— based on Douglas Adams

— Me@2021-11-21 08:03:16 PM

.

.

2021.11.21 Sunday (c) All rights reserved by ACHK

相聚零刻 2.2

尋覓 2.2.3.6.2

.

男士其實要到 28 歲時,思想才帶點成熟,通常。

.

然後,那個哲學家又說… … 千萬不要說出去,以免得罪人。

然後,那個哲學家又說,至於女士,則於 18 歲時,就已經成熟。

聽不聽得出,他在投訴什麼呢?

他的意思是,女士在思想上,於 18 歲時,就已經成熟;自此以後,就不再成熟。(當然,那只是大概而然;每個人也不同。)

.

他舉例:

一位女士可以照顧小孩,與其玩耍,長達數天也不厭倦,而樂在其中。但是,一般男士也不會。

.

女士,就是介乎於,男士與小孩之間的物體。

那個哲學家,覺得那是缺點。但我覺得不一定;那也可以是優點,因為,我們可以視照顧小孩,為女性的天職;然後,再視照顧女性,為男性的天職。

實情是,有很多職業是,需要照顧小孩子的,例如幼稚園教師。如果一位男士,做幼稚園教師的話,你總會覺得很奇怪。

.

那樣,我想講的重點是什麼呢?

假設你現在已經有拖拍,對象和你同年,即是都是大概 20 歲。那樣,他就很可能仍是,傻仔一個。

我不是針對他。我是泛指,一般的年輕男子。我年輕時,也是傻仔人士一名。我當年已經企圖不傻。曾幾何時,我每星期看一本書。但是,現在回顧當年的我,仍然九分低能。

所以,你現在毋須太緊張。

現在的你不用,急於找到對象。或者,到你 25 歲時,才遇到 28 歲的他,會好一點。那時,那個他已經是,思想成熟 和 人格完整的男士。

那不是指,你可以控制。那只是指,理想的劇情怎麼樣。

.

(CPK: 廿五歲的我,才認識 28 歲的他?會不會太遲?)

其實會。理想劇情,應該這樣說:

你倆可能自小,已經認識對方。到你 25 歲時,才與他發展成戀人。

— Me@2021-11-09 10:15:46 PM

.

.

2021.11.10 Wednesday (c) All rights reserved by ACHK