Visualizing higher dimensions, 2

Geometry is global.

Space is what we can see at once.

Dynamics is local.

Time is what we cannot see at once.

— Me@2017-02-07 10:11:34 PM

.

If we could see, for example, several minutes at once, that several minutes would become a spatial dimension.

In other words, that dimension is visualized for us.

— Me@2017-02-03 07:31:25 AM

.

.

2021.08.23 Monday (c) All rights reserved by ACHK

Broken

A: Before meeting you, my life is chaotic.

M: It is because you missed, me. With me, you are completed.

— Me@2021-06-07 06:16:29 PM

— Me@2021-08-22 05:40:53 PM

.

.

2021.08.22 Sunday (c) All rights reserved by ACHK

上山尋寶, 2

重點副作用 6.2 | The non-side-effect-ness of side-effects, 6.2

這段改編自 2010 年 4 月 24 日的對話。

.

其實,我們可以考慮改變方案。雖然有些課題,可能幾個小時,就可以完成,但是,我們可以每個星期,也講不同的課題。

留意,雖然個別課題的成果,只會花幾小時,但是那是指,事先已有課題的情況下。那些有趣而深刻的課題,簡稱「勁題目」,並不會從天而降。那些勁題目本身,大部分情況下,只會在你開始研究,將會花「幾年加幾年」的苦功知識時,才會引發得到。

所以,我們先企圖進攻那些大題目,無論它們長遠是否,對你直接有用;因為,過程之中,自然會引發很多技術細節。而那些技術細節,很多是你直接可用。

例如,剛才因為跟你研究,大學力學課本《Structure and Interpretation of Classical Mechanics》(SICM),而提及到一個程式語言 Scheme programming language。而又因為研究該程式語言,而提及了一個,特別的文字編輯程式 Notepad++。雖然,大學力學和程式語言 Scheme 本身,對你而言,只是工餘興趣,但是,Notepad++ 卻是日常生活也有用。

原初辛苦上山的目的是,傳說中,山頂上的寶藏。但是,上到山頂後,才發現最珍貴的寶藏,反而是沿途找到的那些。

— Me@2021-08-16 04:31:19 PM

.

.

2021.08.16 Monday (c) All rights reserved by ACHK

Ex 1.21 The dumbbell, 3.2

Structure and Interpretation of Classical Mechanics

.

c. Make a change of coordinates to a coordinate system with center of mass coordinates \displaystyle{x_{cm}}, \displaystyle{y_{cm}}, angle \displaystyle{\theta}, distance between the particles \displaystyle{c}, and tension force \displaystyle{F}. Write the Lagrangian in these coordinates, and write the Lagrange equations.

~~~

[guess]

\displaystyle{ \begin{aligned}   m_0 \ddot y_0 &= F \sin \theta \\   m_0 \ddot x_0 &= F \cos \theta \\   m_1 \ddot y_1 &= -F \sin \theta \\   m_1 \ddot x_1 &= -F \cos \theta \\   \end{aligned}}

\displaystyle{ \begin{aligned}   y_{cm} &= \frac{m_0 y_0 + m_1 y_1}{m_0 + m_1} \\   x_{cm} &= \frac{m_0 x_0 + m_1 x_1}{m_0 + m_1} \\   \end{aligned}}

\displaystyle{ \begin{aligned}   \ddot y_{cm} &= \frac{F \sin \theta - F \sin \theta}{m_0 + m_1} = 0 \\   \ddot x_{cm} &= \frac{F \cos \theta - F \cos \theta}{m_0 + m_1} = 0 \\   \end{aligned}}

.

\displaystyle{ \begin{aligned}   y_0 &= y_{cm} - \frac{m_1}{M} c(t) \sin \theta \\   x_0 &= x_{cm} - \frac{m_1}{M} c(t) \cos \theta \\     y_1 &= y_{cm} + \frac{m_0}{M} c(t) \sin \theta \\   x_1 &= x_{cm} + \frac{m_0}{M} c(t) \cos \theta \\   \end{aligned}}

\displaystyle{ \begin{aligned}   x_1 - x_0 &= \frac{m_0}{M} c(t) \cos \theta + \frac{m_1}{M} c(t) \cos \theta \\   &= c(t) \cos \theta \\   \end{aligned}}

\displaystyle{ \begin{aligned}   \dot x_1 - \dot x_0 &= \dot c(t) \cos \theta - c(t) \dot \theta \sin \theta \\   \end{aligned}}

\displaystyle{ \begin{aligned}   \ddot x_1 - \ddot x_0 &=   \ddot c(t) \cos \theta - \dot c(t) \dot \theta \sin \theta   - \dot c(t) \dot \theta \sin \theta - c(t) \ddot \theta \sin \theta - c(t) \dot \theta^2 \cos \theta\\   \end{aligned}}

\displaystyle{ \begin{aligned}   y_1 - y_0 &= c(t) \sin \theta \\   \dot y_1 - \dot y_0 &= \dot c(t) \sin \theta + c(t) \dot \theta \cos \theta \\   \ddot y_1 - \ddot y_0   &=   \ddot c(t) \sin \theta + \dot c(t) \dot \theta \cos \theta   + \dot c(t) \dot \theta \cos \theta + c(t) \ddot \theta \cos \theta - c(t) \dot \theta^2 \sin \theta   \\   \end{aligned}}

.

\displaystyle{ \begin{aligned}   m_0 \ddot y_0 &= F \sin \theta \\   m_0 \ddot x_0 &= F \cos \theta \\   m_1 \ddot y_1 &= -F \sin \theta \\   m_1 \ddot x_1 &= -F \cos \theta \\   \end{aligned}}

When \displaystyle{\dot c(t) = 0} and \displaystyle{\ddot c(t) = 0},

\displaystyle{ \begin{aligned}   \ddot x_1 - \ddot x_0 &= - c(t) \ddot \theta \sin \theta - c(t) \dot \theta^2 \cos \theta \\     - \left( \frac{1}{m_1} + \frac{1}{m_1} \right) F \cos \theta &= - c(t) \ddot \theta \sin \theta - c(t) \dot \theta^2 \cos \theta\\   \end{aligned}}

\displaystyle{ \begin{aligned}     \ddot y_1 - \ddot y_0 &= ... \\     - \left( \frac{1}{m_1} + \frac{1}{m_0} \right) F \sin \theta &= c(t) \ddot \theta \cos \theta - c(t) \dot \theta^2 \sin \theta \\   \end{aligned}}

.

\displaystyle{ \begin{aligned}   \tan \theta &= \frac{ c(t) \ddot \theta \cos \theta - c(t) \dot \theta^2 \sin \theta }{- c(t) \ddot \theta \sin \theta - c(t) \dot \theta^2 \cos \theta} \\   &= \frac{ \ddot \theta - \dot \theta^2 \tan \theta }{- \ddot \theta \tan \theta - \dot \theta^2} \\   \end{aligned}}

\displaystyle{ \begin{aligned}   \tan \theta \left( - \ddot \theta \tan \theta - \dot \theta^2 \right) &= \ddot \theta - \dot \theta^2 \tan \theta \\   &... \\   0 &= \ddot \theta (1 + \tan^2 \theta) \\   \ddot \theta &= 0 \\   \end{aligned}}

.

\displaystyle{ \begin{aligned}   - \left( \frac{1}{m_1} + \frac{1}{m_0} \right) F \sin \theta &= c(t) \ddot \theta \cos \theta - c(t) \dot \theta^2 \sin \theta \\   - \left( \frac{1}{m_1} + \frac{1}{m_1} \right) F \cos \theta &= - c(t) \ddot \theta \sin \theta - c(t) \dot \theta^2 \cos \theta\\   \end{aligned}}

Let \displaystyle{\frac{1}{\mu} = \left( \frac{1}{m_1} + \frac{1}{m_1} \right)} and since \displaystyle{\ddot \theta = 0},

\displaystyle{ \begin{aligned}   - \frac{1}{\mu} F \sin \theta &= - c(t) \dot \theta^2 \sin \theta \\   - \frac{1}{\mu} F \cos \theta &= - c(t) \dot \theta^2 \cos \theta\\   \end{aligned}}

Since \displaystyle{\sin \theta} and \displaystyle{\cos \theta} cannot be both zero at the same time,

\displaystyle{ \begin{aligned}   - \frac{1}{\mu} F &= - c(t) \dot \theta^2 \\   \end{aligned}}

Put \displaystyle{c(t) = l},

\displaystyle{ \begin{aligned}   \frac{1}{\mu} F &= l \dot \theta^2 \\   \dot \theta^2 &= \frac{1}{l \mu} F \\   \end{aligned}}

[guess]

— Me@2021-08-08 05:41:21 PM

.

.

2021.08.10 Tuesday (c) All rights reserved by ACHK

Logical arrow of time, 9.4

The second law of thermodynamics’ derivation (Ludwig Boltzmann’s H-theorem) is with respect to an observer.

How does an observer keep losing microscopic information about a system?

— Me@2017-02-12 07:37:54 PM

.

This drew the objection from Loschmidt that it should not be possible to deduce an irreversible process from time-symmetric dynamics and a time-symmetric formalism: something must be wrong (Loschmidt’s paradox).

The resolution (1895) of this paradox is that the velocities of two particles after a collision are no longer truly uncorrelated. By asserting that it was acceptable to ignore these correlations in the population at times after the initial time, Boltzmann had introduced an element of time asymmetry through the formalism of his calculation.

— Wikipedia on Molecular chaos

.

Physical entropy’s value is with respect to an observer.

— Me@2017-02-12 07:37:54 PM

.

This “paradox” can be explained by carefully considering the definition of entropy. In particular, as concisely explained by Edwin Thompson Jaynes, definitions of entropy are arbitrary.

As a central example in Jaynes’ paper points out, one can develop a theory that treats two gases as similar even if those gases may in reality be distinguished through sufficiently detailed measurement. As long as we do not perform these detailed measurements, the theory will have no internal inconsistencies. (In other words, it does not matter that we call gases A and B by the same name if we have not yet discovered that they are distinct.) If our theory calls gases A and B the same, then entropy does not change when we mix them. If our theory calls gases A and B different, then entropy does increase when they are mixed. This insight suggests that the ideas of “thermodynamic state” and of “entropy” are somewhat subjective.

— Wikipedia on The mixing paradox

— Wikipedia on Gibbs paradox

.

.

2021.08.07 Saturday (c) All rights reserved by ACHK