無限蘋果 1.3

無限年 2.3 | 微積分 4.3

這段改編自 2010 年 6 月 15 日的對話。

由於「無限」不可以用來比較大小,它不是一個數字。所以,例如

\lim_{x -> infinity} (x^2)/(x^3+6)

的意思,並不是要你把「無限」代落 x 之中。換句話說,這個極根值題目並不是問你,當 x 的數值是「無限」時,整個分數的數值是多少,因為,「無限」根本不是一個「數值」。題目真正問你的是,如果分子是一個「超大」的數,而「分母」又同時是一個「超大」數的話,整個分數的數值會是多少。

留意,這個問題並不能直接回答,因為,如果不作詳細一點的分析,我們知道的只是,當 x 是「超大」時,分子的 x^2 會變成「超大」,而分母的 (x^3+6) 又會變成「超大」。整個分數會變成「超小」、「正常」還是「超大」,則暫時不知道。

它究竟是趨向「零」、「有限數」或者「無限大」,要視乎分子的「超大」,還是分母的「超大」,會大過對方。在這個例子中,由於分母中 x 的次方,比分子中 x 的次方大,所以分母的「超大」,會遠遠大過分子的「超大」。例如,當 x = 100,000 (十萬)時,x^2 = 10^10(一百億),而 x^3 卻已經變成 10^15(一千兆)。結果,(x^2)/(x^3+6) 會非常接近零。

— Me@2013.02.14

2013.02.14 Thursday (c) All rights reserved by ACHK