無限蘋果 1.4

無限年 2.4 | 微積分 4.4

這段改編自 2010 年 6 月 15 日的對話。

這個 limit(極限值)的正式運算方法是:

lim_{x -> infinity} x^2/(x^3 + 6)

= lim_{x -> infinity} (1/x)/(1 + 6/x^3)

= (0)/(1 + 0)

= 0

這個方法的的精髓是,雖然,因為「無限」()並不是一個數,你不可以代它於任何變數 x 之中;但是, 是卻一個數,而且等於零,所以,你可以把「零」代於所有(1/x)出現的地方。

( lim_{x -> infinity} 1/x ) = 0

剛才講過,如果分子和分母同時趨向「無限」,整個分數究竟是趨向「零」、「有限數」或者「無限大」,要視乎分子中 x 次方比較大,還是分母。例如在這一題中,分子的 x 是二次方(x^2),而分母的 x 是三次方(x^3),所以,分母的「無限大」高級過分子的「無限大」。結果,整個分數趨向零。

以下只是輔助記憶的密碼,並不是正確合法的數學符號:

你可以在心裡運用,但不可以寫出來。

lim_{x -> infinity} x^2/(x^3 + 6)

= (無限)^2/((無限)^3 + 6)

= 0

換句話說,這個高速心算方法,其實就是由 x 次方的大小,來比較眾多「超大」的級數。有了這個「比較次方 法」,你在作正式的運算前,就可以直接知道答案。所以,除了剛才提及,「用計數機代 x = 100,000」的方法外,你還可以用這個方法來驗算,牽涉「無限」的極限題目。

— Me@2013.02.17

2013.02.17 Sunday (c) All rights reserved by ACHK