# Problem 14.4a2

Closed string degeneracies | A First Course in String Theory

.

(a) State the values of $\alpha' M^2$ and give the degeneracies for the first five mass levels of the closed bosonic string theory.

~~~

p.288 Equation (13.48): $M^2 = \frac{2}{\alpha'} \left( N^\perp + \bar N^\perp - 2 \right)$

.

p.290 “A basis vector $| \lambda, \bar \lambda \rangle$ belongs to the state space _if and only if_ it satisfies the level-matching constraint” $N^\perp = \bar N^\perp$

. $\frac{1}{2} \alpha' M^2~|$ $~\text{Number of states}$ $-2~|$ $~1$ $0~|$ $~(D-2)^2$

. $\frac{1}{2} \alpha' M^2~|$ $~\text{Number of states}$ $2~|$ $...$ ${a_1^I}^\dagger {a_1^J}^\dagger \bar a_1^{K\dagger} \bar a_1^{L\dagger} | p^+, \vec p_T \rangle$ ${a_1^I}^\dagger {a_1^J}^\dagger \bar a_2^{K\dagger} | p^+, \vec p_T \rangle$ ${a_2^I}^\dagger \bar a_1^{K\dagger} \bar a_1^{L\dagger} | p^+, \vec p_T \rangle$

Assuming the signs of the wave functions do not matter: $|$ $|~\text{Number of states}$ ${a_1^I}^\dagger {a_1^J}^\dagger \bar a_1^{K\dagger} \bar a_1^{L\dagger}~|$ $\left[ \frac{(D-2)(D-1)}{2} \right]^2$ ${a_1^I}^\dagger {a_1^J}^\dagger \bar a_2^{K\dagger} | p^+, \vec p_T \rangle~|$ ${a_2^I}^\dagger \bar a_1^{K\dagger} \bar a_1^{L\dagger} | p^+, \vec p_T \rangle~|$

p.291 How come the number of the components of the matrix represents the number of states?

p.292 For massless states, we have only one ${a_1^{I}}^\dagger$ and $\bar a_1^{J\dagger}$, where $a$ and $\bar a$ cannot interchange. So $I$ and $J$ also cannot interchange. In other words, in Equation (13.69), there is no double count. All the states are independent.

But for non-massless states, this probably is not true anymore: $|$ $~\text{Number of states}$ ${a_1^I}^\dagger {a_1^J}^\dagger \bar a_1^{K\dagger} \bar a_1^{L\dagger} | p^+, \vec p_T \rangle~|$ $~\left[ \frac{(D-2)(D-1)}{2} \right]^2$ ${a_1^I}^\dagger {a_1^J}^\dagger \bar a_2^{K\dagger} | p^+, \vec p_T \rangle~|$ $~\left[ \frac{(D-2)(D-1)}{2} \right](D-2)$ ${a_2^I}^\dagger \bar a_1^{K\dagger} \bar a_1^{L\dagger} | p^+, \vec p_T \rangle~|$ $~(D-2)\left[ \frac{(D-2)(D-1)}{2} \right]$

— Me@2018-04-17 04:47:31 PM

.

.