# Quick Calculation 14.8.2

A First Course in String Theory

.

What sector(s) can be combined with a left-moving NS- to form a consistent closed string sector?

~~~

There are no mass levels in NS+, R+, or R- that can match those in NS-. So NS- can be paired only with NS-: $(NS-, NS-)$

. $f_{NS} (x)$ $= \frac{1}{\sqrt{x}} \prod_{n=1}^\infty \left( \frac{1+x^{n-\frac{1}{2}}}{1-x^n} \right)^8$ $= \frac{1}{\sqrt{x}} g_{NS}(x)$ $= \frac{1}{\sqrt{x}} + 8 + 36 \sqrt{x} + 128 x + 402 x \sqrt{x} + 1152 x^2 + ...$

. $g (\sqrt{x})$ $= \prod_{n=1}^\infty \left( \frac{1+x^{n-\frac{1}{2}}}{1-x^n} \right)^8$ $= 1 + 8 \, \sqrt{x} + 36 \, x + 128 \, x^{\frac{3}{2}} + 402 \, x^{2} + 1152 \, x^{\frac{5}{2}} + 3064 \, x^{3} + ...$ $g (-\sqrt{x})$ $= \prod_{n=1}^\infty \left( \frac{1-x^{n-\frac{1}{2}}}{1-x^n} \right)^8$ $= 1 -8 \, \sqrt{x} + 36 \, x -128 \, x^{\frac{3}{2}} + 402 \, x^{2} -1152 \, x^{\frac{5}{2}} + 3064 \, x^{3} + ...$

. $g (\sqrt{x}) + g (-\sqrt{x})$ $= 2(1 + 36 x + 402 x^{2} + 3064 x^{3} + ...)$

. $f_{NS-}(x)$ $= \frac{1}{2 \sqrt{x}} \left[ g (\sqrt{x}) + g (-\sqrt{x}) \right]$ $= \frac{1}{2 \sqrt{x}} \left[ \prod_{n=1}^\infty \left( \frac{1+x^{n-\frac{1}{2}}}{1-x^n} \right)^8 + \prod_{n=1}^\infty \left( \frac{1-x^{n-\frac{1}{2}}}{1-x^n} \right)^8 \right]$ $= \frac{1}{2 \sqrt{x}} \left[ 2(1 + 36 \, x + 402 \, x^{2} + 3064 \, x^{3} + ...) \right]$ $= \frac{1}{\sqrt{x}} + 36 \sqrt{x} + 402 x^{\frac{3}{2}} + 3064 x^{\frac{5}{2}} + ...$

— Me@2018-06-26 07:36:41 PM

.

.