Problem 14.5b2

Counting states in heterotic SO(32) string theory | A First Course in String Theory

.

(b) … Keep only states with \displaystyle{(-1)^{F_L}=+1}; this defines the left R’+ sector.

Write explicitly and count the states we keep for the two lowest mass levels, indicating the corresponding values of \displaystyle{\alpha' M_L^2}. [This is a shorter list.]

~~~

— This answer is my guess. —

\displaystyle{ \begin{aligned} \alpha' M_L^2 &= 1 + \sum_{n \in \mathbf{Z}^+} \left( \bar \alpha_{-n}^I \bar \alpha_{n}^I + n \lambda_{-n}^A \lambda_{n}^A \right) \\ \end{aligned}}

If we define N^\perp in a way similar to equation (14.37), we have

\displaystyle{ \begin{aligned} \alpha' M_L^2 &= 1 + N^\perp \\ \end{aligned}}

.

\displaystyle{\begin{aligned}  (-1)^{F_L} |R_\alpha \rangle_L &= + |R_\alpha \rangle_L \\  (-1)^{F_L} |R_\alpha \rangle_R &= - |R_\alpha \rangle_L \\ \end{aligned}}

.

\displaystyle{\begin{aligned}  \alpha'M^2=1,~~~&N^\perp = 0:~~~~~&|R_\alpha \rangle_L \\  \alpha'M^2=2,~~~&N^\perp = 1:~~~~~&\alpha_{-1} |R_\alpha \rangle_L, \lambda_{-1} |R_\alpha \rangle_R \\  \end{aligned}}

— This answer is my guess. —

— Me@2018-11-06 03:39:15 PM

.

.

2018.11.06 Tuesday (c) All rights reserved by ACHK