Problem 14.5d1.1.2

Counting states in heterotic SO(32) string theory | A First Course in String Theory

.

d) Write a generating function $\displaystyle{f_L(x) = \sum_{r} a(r) x^r}$ for the full set of GSO-truncated states in the left-moving sector (include both NS’+ and R’+ states).

Use the convention where $\displaystyle{a(r)}$ counts the number of states with $\displaystyle{\alpha' M_L^2 = r}$.

Use $\displaystyle{f_L(x)}$ and an algebraic manipulator to find the total number of states in heterotic string theory at $\displaystyle{\alpha' M_L^2 = 8}$.

~~~

.

— This answer is my guess. —

~~~

p.322 $\displaystyle{\alpha' M_L^2 = \alpha' M_R^2}$ $\displaystyle{\frac{1}{2} \alpha' M^2 = \alpha' M_L^2 + \alpha' M_R^2}$ $\displaystyle{\alpha' M^2 = 2 \left( \alpha' M_L^2 + \alpha' M_R^2 \right) = 4 \alpha' M_L^2}$

.

The left NS’+ sector: \displaystyle{ \begin{aligned} \alpha' M_L^2 &= -1 + N^\perp \\ \end{aligned}} $\displaystyle{N^\perp:}$ \displaystyle{\begin{aligned} \left( 1 + \bar \alpha_1 x + (\bar \alpha_1)^2 x^2 + ... \right)^8 \left( 1 + \bar \alpha_2 x + (\bar \alpha_2)^2 x^4 + ... \right)^8 ... \left( 1 + \lambda_{-\frac{1}{2}} x^{\frac{1}{2}} \right)^{32} \left( 1 + \lambda_{-\frac{3}{2}} x^{\frac{3}{2}} \right)^{32} ... \\ \end{aligned}} \displaystyle{\begin{aligned} \prod_{r=1}^\infty \frac{1}{(1 - x^r)^8} (1 + x^{r-\frac{1}{2}})^{32} \\ \end{aligned}}

. \displaystyle{ \begin{aligned} \alpha' M_L^2: \end{aligned}} \displaystyle{\begin{aligned} &f_{L, NS'}(x) \\ &= a_{NS'} (r) x^r \\ &= \frac{1}{x} \prod_{r=1}^\infty \frac{(1 + x^{r-\frac{1}{2}})^{32}}{(1 - x^r)^8} \\ \end{aligned}}

.

“The left NS’ sector is built with oscillators $\displaystyle{\bar \alpha_{-n}^I}$ and $\displaystyle{\lambda_{-r}^A}$ acting on the vacuum $\displaystyle{|NS' \rangle_L}$, declared to have $\displaystyle{(-1)^{F_L} = + 1}$:” $\displaystyle{(-1)^{F_L} |NS' \rangle_L = + |NS' \rangle_L}$

So all the states with integer $\displaystyle{N^{\perp}}$ have $\displaystyle{(-1)^F = +1}$.

. \displaystyle{ \begin{aligned} &f_{L, NS'}(x) \\ \end{aligned}} $\displaystyle{ = \frac{1}{x}+\frac{32}{\sqrt{x}}+504+5248 \, \sqrt{x}+40996 \, x+258624 \, x^{\frac{3}{2}}+1384320 \, x^{2}+6512384 \, x^{\frac{5}{2}} + ...}$

.

Let \displaystyle{ \begin{aligned} &g (\sqrt{x}) \\ &= \prod_{r=1}^\infty \frac{(1 + x^{r-\frac{1}{2}})^{32}}{(1 - x^r)^8} \\ &= 1+32 \, \sqrt{x}+504 \, x+5248 \, x^{\frac{3}{2}}+40996 \, x^{2}+258624 \, x^{\frac{5}{2}}+1384320 \, x^{3}+6512384 \, x^{\frac{7}{2}} + ... \\ \end{aligned}}

Then \displaystyle{ \begin{aligned} &g (-\sqrt{x}) \\ &= \prod_{r=1}^\infty \frac{(1 - x^{r-\frac{1}{2}})^{32}}{(1 - x^r)^8} \\ &= 1 - 32 \sqrt{x} + 504 x - 5248 \, x^{\frac{3}{2}} + 40996 \, x^{2} - 258624 \, x^{\frac{5}{2}}+1384320 \, x^{3} - 6512384 x^{\frac{7}{2}} + ... \\ \\ \end{aligned}}

. \displaystyle{ \begin{aligned} &f_{L, NS'+}(x) \\ &= \frac{1}{x} + 504 + 40996 x + 1384320 x^{2} + ... \\ &= \frac{1}{2x} \left[ g(\sqrt{x}) + g(-\sqrt{x}) \right] \\ &= \frac{1}{2x} \left[ \prod_{r=1}^\infty \frac{(1 + x^{r-\frac{1}{2}})^{32}}{(1 - x^r)^8} + \prod_{r=1}^\infty \frac{(1 - x^{r-\frac{1}{2}})^{32}}{(1 - x^r)^8} \right] \\ \end{aligned}}

.

The left R’+ sector: \displaystyle{ \begin{aligned} \alpha' M_L^2 &= 1 + N^\perp \\ \end{aligned}}

.

~~~

— This answer is my guess. —

— Me@2019-01-14 04:28:10 PM

.

.