Problem 14.5d3

Counting states in heterotic SO(32) string theory | A First Course in String Theory

.

d) Write a generating function \displaystyle{f_L(x) = \sum_{r} a(r) x^r} for the full set of GSO-truncated states in the left-moving sector (include both NS’+ and R’+ states).

Use the convention where \displaystyle{a(r)} counts the number of states with \displaystyle{\alpha' M_L^2 = r}.

Use \displaystyle{f_L(x)} and an algebraic manipulator to find the total number of states in heterotic string theory at \displaystyle{\alpha' M_L^2 = 8}.

~~~

.

— This answer is my guess. —

~~~

.

\displaystyle{ \begin{aligned} \alpha' M_L^2: \end{aligned}}

.

\displaystyle{ \begin{aligned}   &f_{L, NS'+}(x) \\   &= a_{NS'+} (r) x^r \\  &= \frac{1}{2x} \left[ \prod_{r=1}^\infty \frac{(1 + x^{r-\frac{1}{2}})^{32}}{(1 - x^r)^8} + \prod_{r=1}^\infty \frac{(1 - x^{r-\frac{1}{2}})^{32}}{(1 - x^r)^8} \right] \\   & \\  &= \frac{1}{x} + 504 + 40996 x + 1384320 x^{2} + ... \\   \end{aligned}}

.

\displaystyle{\begin{aligned}  &f_{L, R'+}(x) \\ &= a_{R'+} (r) x^r \\ &= 2^{15} x \prod_{r=1}^\infty \frac{(1 + x^{r})^{32}}{(1 - x^r)^8} \\ & \\ &= 32768 \, x+1310720 \, x^{2}+27131904 \, x^{3}+387973120 \, x^{4}+4312727552 \, x^{5} + ...   \end{aligned}}

.

\displaystyle{ \begin{aligned} \alpha' M_R^2: \end{aligned}}

\displaystyle{ \begin{aligned} f_{NS+}(x)  &= 8 + 128 \, x + 1152 \, x^{2} + 7680 \, x^{3} + 42112 \, x^{4} + ... \\ \end{aligned}}

\displaystyle{ \begin{aligned} f_{R-}(x)  &= 8 + 128 x + 1152 x^{2} + 7680 x^{3} + 42112 x^{4} + ... \\ \end{aligned}}

.

So the total number of states in heterotic string theory at \displaystyle{ \begin{aligned} \alpha' M^2 = 8 \end{aligned}} is

\displaystyle{ \begin{aligned}   &\left(1384320 + 1310720 \right) \times \left(1152 + 1152\right) \\  \end{aligned}}.

\displaystyle{ \begin{aligned}   &= 6209372160 \\ \end{aligned}}.

~~~

— This answer is my guess. —

— Me@2019-01-26 04:49:37 PM

.

.

2019.01.27 Sunday (c) All rights reserved by ACHK