# Problem 2.2a

A First Course in String Theory

.

2.2 Lorentz transformations for light-cone coordinates.

Consider coordinates $\displaystyle{x^\mu = ( x^0, x^1, x^2, x^3 )}$ and the associated light-cone coordinates $\displaystyle{x^\mu = ( x^+, x^-, x^2, x^3 )}$. Write the following Lorentz transformations in terms of the light-cone coordinates.

(a) A boost with velocity parameter $\displaystyle{\beta}$ in the $\displaystyle{x^1}$ direction. \displaystyle{ \begin{aligned} \begin{bmatrix} c t' \\ x' \\ y' \\ z' \end{bmatrix} &= \begin{bmatrix} \gamma&-\beta \gamma&0&0\\ -\beta \gamma&\gamma&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{bmatrix} \begin{bmatrix} c\,t \\ x \\ y \\ z \end{bmatrix} \\ \end{aligned}}

~~~ \displaystyle{ \begin{aligned} \begin{bmatrix} x^+ \\ x^- \end{bmatrix} &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ \end{bmatrix} \begin{bmatrix} x^0 \\ x^1 \end{bmatrix} \end{aligned}}

The matrix is its own inverse. \displaystyle{ \begin{aligned} \begin{bmatrix} x^0 \\ x^1 \end{bmatrix} &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \end{bmatrix} \\ \end{aligned}} \displaystyle{ \begin{aligned} \begin{bmatrix} (x^0)' \\ (x^1)' \end{bmatrix} &= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \end{bmatrix} \begin{bmatrix} (x^+)' \\ (x^-)' \end{bmatrix} \\ \end{aligned}}

Apply the result to the original transformation: \displaystyle{ \begin{aligned} \begin{bmatrix} (x^0)' \\ (x^1)' \\ (x^2)' \\ (x^3)' \end{bmatrix} &= \begin{bmatrix} \gamma&-\beta \gamma&0&0\\ -\beta \gamma&\gamma&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{bmatrix} \begin{bmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{bmatrix} \\ \end{aligned}} \displaystyle{ \begin{aligned} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} (x^+)' \\ (x^-)' \\ y' \\ z' \end{bmatrix} &= \begin{bmatrix} \gamma&-\beta \gamma&0&0\\ -\beta \gamma&\gamma&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \\ y \\ z \end{bmatrix} \end{aligned}} \displaystyle{ \begin{aligned} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ \end{bmatrix} \begin{bmatrix} (x^+)' \\ (x^-)' \end{bmatrix} &= \begin{bmatrix} \gamma & -\beta \gamma \\ -\beta \gamma &\gamma \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \end{bmatrix} \end{aligned}} \displaystyle{ \begin{aligned} \begin{bmatrix} (x^+)' \\ (x^-)' \end{bmatrix} &= \begin{bmatrix} \gamma (1-\beta) & 0 \\ 0 & \gamma (1+\beta) \\ \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \end{bmatrix} \end{aligned}}

— Me@2020-02-27 07:14:19 PM

.

.