# Ex 1.14 Lagrange equations for L’

Structure and Interpretation of Classical Mechanics

.

Show by direct calculation that the Lagrange equations for $\displaystyle{L'}$ are satisfied if the Lagrange equations for $\displaystyle{L}$ are satisfied.

~~~

Equation (1.69): $\displaystyle{C \circ \Gamma[q'] = \Gamma[q]}$

Equation (1.70): $\displaystyle{L' = L \circ C}$

Equation (1.71): $\displaystyle{L' \circ \Gamma[q'] = L \circ C \circ \Gamma[q'] = L \circ \Gamma[q]}$

The Lagrange equation: \displaystyle{ \begin{aligned} D ( \partial_2 L \circ \Gamma[q]) - (\partial_1 L \circ \Gamma[q]) &= 0 \\ \end{aligned}}

. \displaystyle{ \begin{aligned} &\partial_2 L \circ \Gamma[q] \\ &= \frac{\partial}{\partial v} L(t, x, v) \\ &= \frac{\partial}{\partial v} L'(t, x', v') \\ &= \frac{\partial}{\partial x'} L'(t, x', v') \frac{\partial x'}{\partial v} + \frac{\partial}{\partial v'} L'(t, x', v') \frac{\partial v'}{\partial v} \\ \end{aligned}}

.

Since it is just a coordinate transformation $\displaystyle{x = F(t, x')}$, $\displaystyle{x}$ has no explicitly dependent on $\displaystyle{v'}$. Similarly, if we consider the coordinate transformation $\displaystyle{x' = G(t, x)}$, $\displaystyle{x'}$ has no explicitly dependent on $\displaystyle{v}$. So \displaystyle{ \begin{aligned} \frac{\partial x'}{\partial v} &= 0 \\ \end{aligned}}

. \displaystyle{ \begin{aligned} &\partial_2 L \circ \Gamma[q] \\ &= \frac{\partial}{\partial v'} L'(t, x', v') \frac{\partial v'}{\partial v} \\ \end{aligned}}

— Me@2020-12-28 04:03:24 PM

.

.