Ex 1.14 Lagrange equations for L’, 2

Structure and Interpretation of Classical Mechanics

.

Show by direct calculation that the Lagrange equations for \displaystyle{L'} are satisfied if the Lagrange equations for \displaystyle{L} are satisfied.

~~~

\displaystyle{x = F(t, x')}

\displaystyle{x' = G(t, x)}

.

\displaystyle{ \begin{aligned} &\partial_2 L \circ \Gamma[q] \\   &= \frac{\partial}{\partial v} L(t, x, v) \\   &= \frac{\partial}{\partial v} L'(t, x', v') \\   &= \frac{\partial}{\partial x'} L'(t, x', v') \frac{\partial x'}{\partial v} + \frac{\partial}{\partial v'} L'(t, x', v') \frac{\partial v'}{\partial v} \\   &= \frac{\partial}{\partial v'} L'(t, x', v') \frac{\partial v'}{\partial v} \\  \end{aligned}}

.

\displaystyle{v' = \partial_0 G(t, x) + \partial_1 G(t,x) v}

\displaystyle{ \begin{aligned}   \frac{\partial v'}{\partial v} &= \partial_1 G(t,x) = \frac{\partial x'}{\partial x}  \\  \end{aligned}}

.

\displaystyle{ \begin{aligned} &\partial_2 L \circ \Gamma[q] \\   &= \frac{\partial L'}{\partial v'} \frac{\partial x'}{\partial x}  \\  \end{aligned}}

.

The Lagrange equation:

\displaystyle{ \begin{aligned} D ( \partial_2 L \circ \Gamma[q]) - (\partial_1 L \circ \Gamma[q]) &= 0 \\ \end{aligned}}

.

\displaystyle{   \begin{aligned}   &\partial_1 L \circ \Gamma[q] \\  &= \partial_1 L' \circ \Gamma[q'] \\    &= \frac{\partial}{\partial x} L' (t, x', v') \\    &= \frac{\partial L'}{\partial x'}  \frac{\partial x'}{\partial x} + \frac{\partial L'}{\partial v'} \frac{\partial v'}{\partial x} \\    \end{aligned}}

.

\displaystyle{ \begin{aligned}   D ( \partial_2 L \circ \Gamma[q]) - (\partial_1 L \circ \Gamma[q]) &= 0 \\   D \left(  \frac{\partial L'}{\partial v'} \frac{\partial x'}{\partial x} \right) - \left( \frac{\partial L'}{\partial x'}  \frac{\partial x'}{\partial x} + \frac{\partial L'}{\partial v'} \frac{\partial v'}{\partial x} \right) &= 0 \\   D \left(  \frac{\partial L'}{\partial v'} \right) \frac{\partial x'}{\partial x}   + \frac{\partial L'}{\partial v'} D \left( \frac{\partial x'}{\partial x} \right)   - \left( \frac{\partial L'}{\partial x'} \frac{\partial x'}{\partial x} + \frac{\partial L'}{\partial v'} \frac{\partial v'}{\partial x} \right) &= 0 \\   \end{aligned}}

\displaystyle{ \begin{aligned}   \left[ D \left(  \frac{\partial L'}{\partial v'} \right) - \frac{\partial L'}{\partial x'} \right] \frac{\partial x'}{\partial x}  + \frac{\partial L'}{\partial v'} D \left( \frac{\partial x'}{\partial x} \right)   - \frac{\partial L'}{\partial v'} \frac{\partial v'}{\partial x} &= 0 \\   \end{aligned}}

.

\displaystyle{ \begin{aligned}   &D \left( \frac{\partial x'}{\partial x} \right) \\   &= \frac{d}{dt} \left( \frac{\partial x'}{\partial x} \right) \\   &=     \frac{\partial}{\partial t} \left( \frac{\partial x'}{\partial x} \right) \frac{\partial t}{\partial t}  + \frac{\partial}{\partial x'} \left( \frac{\partial x'}{\partial x} \right) \frac{\partial x'}{\partial t}  + \frac{\partial}{\partial v'} \left( \frac{\partial x'}{\partial x} \right) \frac{\partial v'}{\partial t} \\   &=     \frac{\partial}{\partial t} \left( \frac{\partial x'}{\partial x} \right)   + \frac{\partial}{\partial x} \left( \frac{\partial x'}{\partial x'} \right) \frac{\partial x'}{\partial t}  + \frac{\partial}{\partial x} \left( \frac{\partial x'}{\partial v'} \right) \frac{\partial v'}{\partial t} \\   &=     \frac{\partial}{\partial t} \left( \frac{\partial x'}{\partial x} \right)   + \frac{\partial}{\partial x} \left( 1 \right) \frac{\partial x'}{\partial t}  + \frac{\partial}{\partial x} \left( 0 \right) \frac{\partial v'}{\partial t} \\   &=     \frac{\partial}{\partial x} \left( \frac{\partial x'}{\partial t} \right)   + 0  + 0 \\   &=     \frac{\partial v'}{\partial x} \\   \end{aligned}}

.

\displaystyle{ \begin{aligned}   \left[ D \left(  \frac{\partial L'}{\partial v'} \right) - \frac{\partial L'}{\partial x'} \right] \frac{\partial x'}{\partial x}   + \frac{\partial L'}{\partial v'} \frac{\partial v'}{\partial x}     - \frac{\partial L'}{\partial v'} \frac{\partial v'}{\partial x} &= 0 \\   \left[ D \left(  \frac{\partial L'}{\partial v'} \right) - \frac{\partial L'}{\partial x'} \right] \frac{\partial x'}{\partial x} &= 0 \\   D \left(  \frac{\partial L'}{\partial v'} \right) - \frac{\partial L'}{\partial x'} &= 0 \\   \end{aligned}}

— Me@2021-01-06 08:10:46 PM

.

.

2021.01.09 Saturday (c) All rights reserved by ACHK