Ex 1.24 Constraint forces, 1.3

Structure and Interpretation of Classical Mechanics

.

Find the tension in an undriven planar pendulum.

~~~

Tangential component:

\displaystyle{\begin{aligned}  \left(F_{\text{net}}\right)_t &= m a_t \\  - mg \sin \theta &= m l \ddot \theta \\  \end{aligned}}

Radial component:

\displaystyle{\begin{aligned}  \left(F_{\text{net}}\right)_r &= m a_r \\  F(t) - mg \cos \theta &= m l \dot \theta^2 \\  \end{aligned}}

— Me@2022-04-10 04:22:27 PM

.

.

2022.04.10 Sunday (c) All rights reserved by ACHK