Ex 1.28 Kinetic energy contains terms that are linear

Structure and Interpretation of Classical Mechanics

.

An analogous result holds when the f_\alpha‘s depend explicitly on time.

a. Show that in this case the kinetic energy contains terms that are linear in the generalized velocities.

~~~

\displaystyle{\begin{aligned}    \mathbf{v_\alpha} &= \partial_0 f_\alpha (t,q) + \partial_1 f_\alpha (t,q) v \\   T(t,q,v) &= \frac{1}{2} \sum_\alpha m_\alpha v^2_\alpha \\   v_\alpha &= |\mathbf{v}_\alpha| \\   v &= \text{generalized velocity} \\   \mathbf{v}_\alpha &= \text{rectangular velocity} \\     \end{aligned}}

.

\displaystyle{\begin{aligned}    &T(t,q,v) \\    &= \frac{1}{2} \sum_\alpha m_\alpha |\partial_0 f_\alpha (t,q) + \partial_1 f_\alpha (t,q) v|^2 \\      &= \frac{1}{2} \sum_\alpha m_\alpha       \left \{ [\partial_0 f_\alpha (t,q)]^2 + 2 \partial_0 f_\alpha (t,q) \partial_1 f_\alpha (t,q) v + [\partial_1 f_\alpha (t,q) v]^2 \right \} \\     \end{aligned}}

— Me@2022-10-15 11:17:59 AM

.

.

2022.10.15 Saturday (c) All rights reserved by ACHK