3.4 Electric fields and potentials of point charges

A First Course in String Theory

.

(a) Show that for time-independent fields, the Maxwell equation \displaystyle{T_{0ij}=0} implies that \displaystyle{\partial_i E_j - \partial_j E_i = 0}. Explain why this condition is satisfied by the ansatz \displaystyle{\vec E = - \nabla \Phi}.

~~~

Eq. (3.23):

\displaystyle{    \begin{aligned}  T_{\mu \lambda \nu} &= \partial_\lambda F_{\mu \nu} + \partial_\mu F_{\nu \lambda} + \partial_\nu F_{\lambda \mu}  \\   \end{aligned}}

\displaystyle{    \begin{aligned}    &\vec E \\  &= - \nabla \Phi \\  &= - \left( \partial_x, \partial_y, \partial_z \right) \Phi \\  \end{aligned}}

\displaystyle{    \begin{aligned}    &\partial_i E_j - \partial_j E_i \\  &= \partial_i \partial_j \Phi - \partial_j \partial_i \Phi \\  \end{aligned}}

— Me@2023-03-18 11:08:24 AM

.

.

2023.03.18 Saturday (c) All rights reserved by ACHK