Problem 14.5d1.2.3

A First Course in String Theory

.

The generating function is an infinite product:

\displaystyle{ \begin{aligned} \alpha' M_L^2: \end{aligned}}

\displaystyle{\begin{aligned} &f_{L, NS+}(x) \\ &= a_{NS+} (r) x^r \\ &= \frac{1}{x} \prod_{r=1}^\infty \frac{(1 + x^{r-\frac{1}{2}})^{32}}{(1 - x^r)^8} \\ \end{aligned}}

.

To evaluate the infinite product, you can use wxMaxima. However, it does not provide \LaTeX rendering of answers yet. Instead, you can call Maxima‘s code in SageMath, if you use Jupyter Notebook to access SageMath.

reset()

%display latex

maxima('taylor((1/x)*product((1 + x^(r - 1/2))^32 / (1 - x^r)^8, r, 1, oo), x, 0, 6)')

\displaystyle {{1}\over{x}}+{{32}\over{\sqrt{x}}}+504+5248\,\sqrt{x}+40996\,x+  258624\,x^{{{3}\over{2}}}+1384320\,x^2+6512384\,x^{{{5}\over{2}}}+  27623826\,x^3+107640288\,x^{{{7}\over{2}}}+390667136\,x^4+1334500992  \,x^{{{9}\over{2}}}+4325559288\,x^5+13390178752\,x^{{{11}\over{2}}}+  39794729472\,x^6+\cdots

— Me@2024-12-02 06:33:46 AM

.

.

2024.12.31 Tuesday (c) All rights reserved by ACHK