Monty Hall problem 1.3

Frequency probability and Bayesian probability, 3.1

機會率哲學 3.1

這段改編自 2010 年 4 月 3 日的對話。

除了錯誤使用「機會均等假設」外,思考「蒙提霍爾問題」時,另一個典型錯誤是,一般人不明顯知道,各道門的中獎機會率,在遊戲中途可能有變,即使房車和山羊的位置,都維持原本。

「機會率」除了描述客觀的物理系統外,還會反映觀察者的主觀知識狀態。換句話說,隨著那位遊戲參賽者,對他所觀察的系統,獲得多一點資料,各個機會率就會有變。例如,第三道門原本的中獎機會,相對於參賽者來說,是三分之一。但是,當主持人打開了它,導致參賽者知道「門後是山羊」後,相對於參賽者來說,第三道門中獎機會率,就立刻變成零。

This is a public domain image.

即使外在客觀的系統沒有變,只要觀察者對該系統的主觀知識,有所增加,事件各個可能結果,所對應的機會率,就要全部重新運算。

同理,雖然根據題目的假設,原初每道門的中獎機會均等,都是三分之一,但是,因為參賽者在中途,獲得了多一點資料,餘下兩道門中獎的機會率,未必仍然和對方相同。   

This is a public domain image.

而正確的答案是,餘下的兩道門中獎機會,不再均等。原本的被選的那一道,中獎的機會是三分之一;另一道門中獎的機會,則變成了三分之二。

This is a public domain image.

— Me@2012.11.21

2012.11.21 Wednesday (c) All rights reserved by ACHK