對稱情境 1.1

這段改編自 2010 年 6 月 15 日的對話。

有兩個袋。每個袋中都有十張卡紙,而每張卡紙上,都有由 1 到 10 的其中一個數字,沒有重複。現在,甲要由第一個袋中,抽一張卡紙出來。而乙則要在另一個袋中,抽另一張卡紙出來。假設整個過程是隨機的,即是各個可能性的機會均等。

如果甲的數字大過乙,那就為之「甲勝」。如果乙的數字大過甲,那就為之「乙勝」。已知「甲勝」的機會率是 q。問題是,「甲乙打和」的機會是多少?

整個遊戲只有三個可能的結果 ── 「甲勝」、「乙勝」 或者 「打和」 ── 而它們是互斥事件。所以,

P(甲勝)+ P(打和)+ P(乙勝)= 1

因為「甲勝」的機會是 q,而甲乙所面對的情境,又完全相同,所以「乙勝」的機會和「甲勝」一樣,都是 q。

q + P(打和)+ q = 1

P(打和)= 1 – 2q

結論是,「甲乙打和」的機會率是(1 – 2q)。

— Me@2013.01.13

致讀者:如發現本文有思考漏洞,或者運算錯誤,請以電郵告知本人。謝謝!

— Me@2012.10.17

2013.01.13 Sunday (c) All rights reserved by ACHK